【題目】在悠久燦爛的中國古代文化中,數(shù)學文化是其中的一朵絢麗的奇葩.《張丘建算經(jīng)》是我國古代有標志性的內(nèi)容豐富的眾多數(shù)學名著之一,大約創(chuàng)作于公元五世紀.書中有如下問題:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈,問日益幾何?”.其大意為:“有一女子擅長織布,織布的速度一天比一天快,從第二天起,每天比前一天多織相同數(shù)量的布,第一天織尺,一個月共織了九匹三丈,問從第二天起,每天比前一天多織多少尺布?”.已知匹丈,丈尺,若這一個月有天,記該女子這一個月中的第天所織布的尺數(shù)為,,對于數(shù)列、,下列選項中正確的為( )
A.B.是等比數(shù)列C.D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設是橢圓的左焦點,直線:與軸交于點,為橢圓的長軸,已知,且,過點作斜率為直線與橢圓相交于不同的兩點 ,
(1)當時,線段的中點為,過作交軸于點,求;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在其圖象上存在不同的兩點,其坐標滿足條件:的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):
①;②;③;④.其中是“柯西函數(shù)”的為( )
A.①②B.③④C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為.
(1)求拋物線C的方程;
(2)設直線,對任意的拋物線C上都存在四個點到直線l的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,角A,B,C的對邊分別為a,b,c,
(1)若還同時滿足下列四個條件中的三個:①,②,③,④的面積,請指出這三個條件,并說明理由;
(2)若,求周長L的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍兩種顏色的單車,已知黃、藍兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質量,決定從市場中隨機抽取5輛單車進行體驗,若每輛單車被抽取的可能性相同.
(1)求抽取的5輛單車中有2輛是藍色顏色單車的概率;
(2)在騎行體驗過程中,發(fā)現(xiàn)藍色單車存在一定質量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術部門作進一步抽樣檢測,并規(guī)定若抽到的是藍色單車,則抽樣結束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過()次.在抽樣結束時,已取到的黃色單車以表示,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中為常數(shù),函數(shù)和的圖象在它們與坐標軸交點處的切線互相平行.
(1)求的值;
(2)若存在,使不等式成立,求實數(shù)的取值范圍;
(3)令,求證:.
查看答案和解析>>
科目:
來源: 題型:【題目】橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)設為橢圓上任一點, 為其右焦點,點滿足.
①證明: 為定值;
②設直線與橢圓有兩個不同的交點,與軸交于點.若成等差數(shù)列,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com