己知圓C:(x-xo)2+(y-y0)2=R2(R>0)與y軸相切,圓心C在直線l:x-3y=0上,且圓C截直線m:x-y=0所得的弦長為2,求圓C方程.

(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9

解析試題分析:利用題中圓的方程,和已知條件,可知|x0|=R,又由于圓心在直線x-3y=0上可知x0=3y0,根據(jù)圓C截直線m:x-y=0所得的弦長為2,由勾股定理可知,三方程聯(lián)立即可求出結(jié)果.
解:圓C:(x-xo)2+(y-y0)2=R2(R>0)與y軸相切,則|x0|=R   (1)
圓心C在直線l:x-3y=0上,則x0=3y0         (2)
圓C截直線m:x-y=0所得的弦長為2,則
把(1)(2)代入上式消去x0,y0R=3,則x0=3,y0="1" 或x0=-3,y0=-1
故所求圓C的方程為:(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9
考點:1.圓的性質(zhì);2.直線與圓的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知圓與圓,在下列說法中:
①對于任意的,圓與圓始終相切;
②對于任意的,圓與圓始終有四條公切線;
③當(dāng)時,圓被直線截得的弦長為
分別為圓與圓上的動點,則的最大值為4.
其中正確命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.求證:

(1)圓心O在直線AD上;
(2)點C是線段GD的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓()
(1)當(dāng)時,求經(jīng)過原點且與圓相切的直線的方程;
(2)若圓恰在圓的內(nèi)部,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點,動點P 滿足:|PA|=2|PB|.
(1)若點P的軌跡為曲線,求此曲線的方程;
(2)若點Q在直線l1: x+y+3=0上,直線l2經(jīng)過點Q且與曲線只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標(biāo)原點,過點的平行線交曲線兩個不同的點.
(1)求曲線的方程;
(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的方程為:,為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與軸、軸交于點、、不同于原點),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線與曲線交于不同的兩點、,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于,兩點,且,求的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線ly=2x-4.設(shè)圓C的半徑為1,圓心在l上.
 
(1)若圓心C也在直線yx-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案