一個幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A、
2
2
3
B、
4
3
C、
4
2
3
D、4
2
考點:棱柱、棱錐、棱臺的體積
專題:計算題,空間位置關(guān)系與距離
分析:由三視圖可知幾何體為正四棱錐,底面為邊長2的正方形,側(cè)棱相等,斜高為
3
,運用棱錐的體積該函數(shù),即可得到.
解答: 解:由三視圖可知幾何體為四棱錐,
底面為邊長2的正方形,側(cè)棱相等,斜高為
3

則由體積公式得,
V=
1
3
×22×
(
3
)2-12
=
4
2
3

故選C.
點評:本題考查幾何體的三視圖與空間幾何體的關(guān)系,考查棱錐的體積的運算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓C:(x-5)2+(y-4)2=6內(nèi)的一定點A(4,3),在圓上作弦MN,使∠MAN=90°,求弦MN的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列bn=
n+1
(n+2)2•4n2
,數(shù)列{bn}前n項和Tn.求證:Tn
5
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x(x≤0)
log2x(x>0)
,g(x)=
2
x
,若f[g(a)]≤1,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-4x+2+3a,x<-
1
2
4+3a,-
1
2
≤x<
3
2
4x-2+3a,x≥
3
2

(Ⅰ)當(dāng)a=0時,寫出不等式f(x)≥6的解集;
(Ⅱ)若不等式f(x)≥a2對一切實數(shù)x恒成立時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b.
(Ⅰ)設(shè)b=a,若|f(x)|在x∈[0,1]上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)求證:存在x0∈[-1,1],使|f(x0)|≥|a|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+xlnx,(a∈R)
(1)當(dāng)a=0時,求f(x)的最小值;
(2)在區(qū)間(1,2)內(nèi)任取兩個實數(shù)p,q(p≠q),若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求實數(shù)a的取值范圍;
(3)求證:
ln2
23
+
ln3
33
+
ln
43
+…+
lnn
n3
1
e
(其中n>1,n∈N*,e=2.71828…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1-x
ax
,其中a為大于零的常數(shù).
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(Ⅱ)證明(a2+1)xlnx≥x-1,在區(qū)間[1,+∞)恒成立;
(Ⅲ)求函數(shù)f(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個水平放置的平面圖形的斜二測直觀圖是一個等腰直角三角形,它的底角為45°,兩腰長均為1,則這個平面圖形的面積為
 

查看答案和解析>>

同步練習(xí)冊答案