【題目】設(shè)直線4x﹣3y+12=0的傾斜角為A
(1)求tan2A的值;
(2)求cos( ﹣A)的值.

【答案】
(1)解:由4x﹣3y+12=0,

得:k= ,則tanA= ,

∴tan2A= =﹣


(2)解:由 ,以及0<A<π,

得:sinA= ,cosA= ,

cos( ﹣A)=cos cosA+sin sinA= × + × =


【解析】(1)求出tanA,根據(jù)二倍角公式,求出tan2A的值即可;(2)根據(jù)同角的三角函數(shù)的關(guān)系分別求出sinA和cosA,代入兩角差的余弦公式計算即可.
【考點精析】認真審題,首先需要了解兩角和與差的余弦公式(兩角和與差的余弦公式:),還要掌握直線的傾斜角(當直線l與x軸相交時, 取x軸作為基準, x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時, 規(guī)定α=0°)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓C:(x﹣3)2+(y﹣4)2=5,A、B是圓C上的兩個動點,AB=2,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)若關(guān)于的不等式上恒成立,求的取值范圍;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+cx(a≠0,a∈R,c∈R),當x=1時,f(x)取得極值﹣2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)若對任意x1、x2∈[﹣1,1],不等式|f(x1)﹣f(x2)|≤t恒成立,求實數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點為D,B1C∩BC1=E.

求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+2ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當x>0時,x2+1<ex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,若a1=1,anan+1=( n2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017湖南婁底二模】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如下表:

質(zhì)量指標值

等級

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定?

(Ⅱ)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(Ⅲ)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后在抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

同步練習冊答案