【題目】已知,函數(shù).

1)當(dāng)時,解不等式

2)若函數(shù)的值域為,求實數(shù)a的取值范圍;

3)設(shè),若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.

【答案】123

【解析】

1)利用題意得到對數(shù)不等式,求解不等式,即可求得最終結(jié)果;

2)將原問題轉(zhuǎn)化為二次函數(shù)的問題,結(jié)合二次函數(shù)的開口方向和判別式可得關(guān)于實數(shù)的不等式組,求解不等式組即可;

3)將原問題轉(zhuǎn)化為函數(shù)只有一個根的問題,然后分類討論即可求得最終結(jié)果.

1)當(dāng)時,不等式為:,可得:,則不等式解為.

2)函數(shù)

設(shè)函數(shù)的值域為M,則,

當(dāng),即時,不滿足題意,

當(dāng),即時,,得實數(shù)的取值范圍是.

3)因有且只有一個零點,

,原問題等價于方程

當(dāng)滿足時,只有唯一解,方程(*)化為,

①當(dāng)時,解得,此時,滿足題意;

②當(dāng)時,兩根均為,此時也滿足;

③當(dāng)時,兩根為,

當(dāng)時,

當(dāng)時,,

由題意,,解得,

綜上,a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調(diào)區(qū)間;

(3)試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為,直線過定點,斜率為,為何值時,直線與拋物線

1)只有一個公共點;

2)有兩個公共點;

3)沒有公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點為極點,軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

(1)當(dāng)時,寫出直線l的普通方程及曲線C的直角坐標(biāo)方程;

(2)已知點,設(shè)直線l與曲線C交于A,B兩點,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理財公司有兩種理財產(chǎn)品,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品

投資結(jié)果

獲利20%

獲利10%

不賠不賺

虧損10%

概率

0.2

0.3

0.2

0.3

產(chǎn)品(其中

投資結(jié)果

獲利30%

不賠不賺

虧損20%

概率

0.1

(1)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進行投資,如果一年后他們中至少有一人獲利的概率大于0.7,求的取值范圍;

(2)丙要將家中閑置的10萬元錢進行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應(yīng)選用哪種產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)上年度電價為0.8,年用電量為,本年度計劃將電價降到0.550.75之間,而用戶期待電價為0.4,下調(diào)電價后新增加的用電量與實際電價和用戶期望電價的差成反比(比例系數(shù)為K),該地區(qū)的電力成本為0.3.(注:收益=實際用電量(實際電價-成本價)),示例:若實際電價為0.6,則下調(diào)電價后新增加的用電量為)

1)寫出本年度電價下調(diào)后,電力部門的收益與實際電價的函數(shù)關(guān)系;

2)設(shè),當(dāng)電價最低為多少仍可保證電力部門的收益比上一年至少增長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)若的定義域為,求實數(shù)的取值范圍;

2)當(dāng)時,求函數(shù)的最小值;

3)是否存在非負實數(shù),使得函數(shù)的定義域為,值域為,若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

同步練習(xí)冊答案