已知圓,圓當m為何值時,

(1)圓與圓相外切;

(2)圓與圓內(nèi)含.

答案:m=-5#m=2;-2<m<-1
解析:

解:對于圓與圓的方程,經(jīng)配方后,有

,

∴兩圓的圓心;半徑,且

(1)若圓與圓相外切,則,

解得m=5m=2

(2)若圓內(nèi)含,則

解得-2m<-1

綜上:當m=5m=2時,相外切,當-2m<-1時,內(nèi)含.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C方程為x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線4x+3y-3=0與圓C的位置關系,并證明你的結論;
(3)當m=2時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B,使得對橢圓上任意一點Q(異于長軸端點),直線QA,QB的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:(x-1)2+y2=9,直線l:y=x-m
(1)當直線l與圓M相切時,求m的值.
(2)當直線l與圓M相交于P,Q兩點,且|PQ|=2
7
,求直線l在y軸上的截距.
(3)當直線l與圓M相交于P,Q兩點,若在x軸上存在一點R,恰好以PQ為直徑的圓過R點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB.點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點.
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當點P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1的圓心在坐標原點O,且恰好與直線l1x-y-2
2
=0
相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設點A(x0,y0)為圓上任意一點,AN⊥x軸于N,若動點Q滿足
OQ
=m
OA
+n
ON
,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2
(Ⅲ)在(Ⅱ)的結論下,當m=
3
2
時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北衡水中學高三第一次模擬考試文科數(shù)學試卷(解析版) 題型:解答題

(本題12分)

如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點P是圓O上異于A、B的任意一點,直線PA、PB分別交L與M、N點。

(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;

(Ⅱ)當點P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點。

 

查看答案和解析>>

同步練習冊答案