【題目】
設平面上向量=(cosα,sinα) (0°≤α<360°),=(-,).
(1)試證:向量與垂直;
(2)當兩個向量與的模相等時,求角α.
【答案】(1)見解析;(2)α=30°,或α=210°.
【解析】
本試題主要是考查了向量的數(shù)量積的運算,以及向量的數(shù)量積的性質(zhì)的運用,以及三角函數(shù)的變形運用,和三角方程的求解的綜合試題.
(1)根據(jù)已知要證明向量與垂直,則利用數(shù)量積為零即可.
(2)由||=1,||=1,且|+|=|-|,利用模相等,則平方后相等來解得關于角α的方程,然后解三角方程得到角的值.
解: (1)(+)·(-)=(cosα-,sinα+)·(cosα+,sinα-)
=(cosα-)(cosα+)+(sinα+)(sinα-)
=cos2α-+sin2α-=0,
∴⊥. ……4分
(2)由||=1,||=1,且|+|=|-|,平方得(+)2=(-)2,
整理得22-22+4=0①.
∵||=1,||=1,∴①式化簡得·=0,
·=(cosα,sinα)·(-,)=-cosα+sinα=0,即cos(60°+α)=0.
∵0°≤α<360°,∴可得α=30°,或α=210°
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設S、A、B、C四點均在以O為球心的某個球面上。則點O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點,拋物線的焦點為,設為拋物線上異于頂點的動點,直線交拋物線于另一點,連結,,并延長,分別交拋物線與點,.
(1)當軸時,求直線與軸的交點的坐標;
(2)設直線,的斜率分別為,,試探索是否為定值?若是,求出此定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,E,F分別為棱,AB上的點,下列說法正確的是________.(填上所有正確命題的序號)
①平面
②在平面內(nèi)總存在與平面平行的直線
③在側(cè)面上的正投影是面積為定值的三角形
④當E,F為中點時,平面截該正方體所得的截面圖形是五邊形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,對任意,有成立.
(1)求的通項公式;
(2)設,,是數(shù)列的前項和,求正整數(shù),使得對任意,恒成立;
(3)設,是數(shù)列的前項和,若對任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程及曲線上的動點到坐標原點的距離的最大值;
(Ⅱ)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.
(1)求這次行車總費用y關于x的表達式;
(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com