【題目】設(shè)關(guān)于x的二次方程px2+(p﹣1)x+p+1=0有兩個不相等的正根,且一根大于另一根的兩倍,求p的取值范圍.

【答案】解:關(guān)于x的二次方程px2+(p﹣1)x+p+1=0有兩個不相等的正根,
則△=(p﹣1)2﹣4p(p+1)=﹣3p2﹣6p+1>0,解得﹣1﹣ <p<﹣1+ ,
當(dāng)x1+x2= >0,及x1x2= >0時,方程的兩根為正.解之,得0<p<1.故0<p< ﹣1.
記x1= ,x2= ,
由x2>2x1,并注意p>0,得3 >1﹣p>0,
∴28p2+52p﹣8<0,即7p2+13p﹣2<0.∴﹣2<p<
綜上得p的取值范圍為{p|0<p< }
【解析】根據(jù)根與系數(shù)的關(guān)系和判別式即可求出p的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, ,斜率為的直線過點,且和以為圓相切.

(1)求圓的方程;

(2)在圓上是否存在點,使得,若存在,求出所有的點的坐標(biāo);若不存在說明理由;

(3)若不過的直線與圓交于, 兩點,且滿足, 的斜率依次為等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過點(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓外切,與圓內(nèi)切.

(Ⅰ)試求動圓圓心的軌跡的方程;

(Ⅱ)與圓相切的直線與軌跡交于兩點,若直線的斜率成等比數(shù)列,試求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;

(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時,ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莫數(shù)學(xué)建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角, .

(Ⅰ)該小組已經(jīng)測得一組的值, ,請推測的值;

(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個質(zhì)量指標(biāo)分別為xy,z,用綜合指標(biāo)Sxyz評價該產(chǎn)品的等級.若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機(jī)抽取2件產(chǎn)品,

() 用產(chǎn)品編號列出所有可能的結(jié)果;

() 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線)與橢圓相交于,兩個不同的點,與軸相交于點,記為坐標(biāo)原點.

(1)證明:;

(2)若,求的面積取得最大值時的橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案