已知函數(shù)f(x)=
1
2
x2
+x-(x+1)ln(x+1),判斷f(x)的單調(diào)性.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的定義域,然后對函數(shù)求導(dǎo),令導(dǎo)數(shù)大于零,解得函數(shù)的增區(qū)間,導(dǎo)數(shù)小于零得函數(shù)的減區(qū)間.
解答: 解:由x+1>0得x>-1,所以函數(shù)的定義域?yàn)椋?1,+∞).
又f′(x)=x-ln(x+1),
顯然f′(0)=0.
而[f′(x)]′=1-
1
x+1
,當(dāng)-1<x<0時,[f′(x)]′<0;當(dāng)x>0時,[f′(x)]′>0.
故f′(x)在(-1,0)上遞減,在(0,+∞)上遞增,結(jié)合f′(0)=0,
所以f′(x)≥f′(0)=0.當(dāng)且僅當(dāng)x=0時取等號.
故原函數(shù)在(-1,0),(0,+∞)上都是增函數(shù).
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,此題涉及到二次求導(dǎo),要注意每次求導(dǎo)的目的不同.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“若a>b,則
3a
3b
”時,假設(shè)的內(nèi)容是(  )
A、a>b
B、a≤b
C、
3a
3b
D、
3a
3b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O1的方程為x2+(y+1)2=4,圓O2的圓心O2(2,1).
(1)若圓O2與圓O1外切,求圓O2的方程;
(2)若圓O2與圓O1交于A、B兩點(diǎn),且|AB|=2
2
.求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
3
,則sin2α+2sinαcosα-3cos2α+1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
3
5
,且α∈(π,
2
),則cos
α
2
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M是拋物線y2=8x上的動點(diǎn),F(xiàn)為拋物線的焦點(diǎn),點(diǎn)A在圓C:(x-3)2+(y+1)2=1上,則|AM|+|MF|的最小值為( 。
A、2
B、4
C、6
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD是邊長為8的菱形,∠BAD=
π
3
,若PA=PD=5,平面PAD⊥平面ABCD,E、F分別為BC、PA的中點(diǎn).
(1)求證:EF∥面PCD;
(2)求證:AD⊥PB;
(3)求三棱錐C-BDP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的一條過焦點(diǎn)F的弦PQ,點(diǎn)R在直線PQ上,且滿足
OR
=
1
2
(
OP
+
OQ
)
,R在拋物線準(zhǔn)線上的射影為S,設(shè)α,β是△PQS中的兩個銳角,則下列四個式子
①tanαtanβ=1;②sinα+sinβ≤
2
;③cosα+cosβ>1;④|tan(α-β)|>tan
α+β
2

中一定正確的有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ∈(0,
π
2
),則
2
sinθ
+
3
1-sinθ
的最小值為( 。
A、5+2
6
B、10
C、6+2
5
D、6+5
2

查看答案和解析>>

同步練習(xí)冊答案