【題目】如圖,直三棱柱ABCA1B1C1中(側棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中點.
(1)求證:C1D⊥平面AA1B1B;
(2)當點F 在BB1上的什么位置時,AB1⊥平面C1DF ?并證明你的結論.
【答案】(1)見解析;(2)見解析
【解析】
(1)由是直三棱柱,D是A1B1的中點和題設條件,得C1D⊥A1B1和AA1⊥C1D,利用線面垂直的判定定理,即可證明;
(2)作交AB1于點E,延長DE交BB1于點F,連接C1F,則AB1⊥平面C1DF,點F即所求.
(1)∵是直三棱柱,
∴A1C1=B1C1=1,且∠A1C1B1=90°.
又D是A1B1的中點,
∴C1D⊥A1B1.
∵AA1⊥平面A1B1C1,C1D 平面A1B1C1,
∴AA1⊥C1D,
∴C1D⊥平面.
(2)作交AB1于點E,延長DE交BB1于點F,連接C1F,則AB1⊥平面C1DF,點F即所求.
事實上,∵C1D⊥平面AA1B1B,AB1平面AA1B1B,
∴C1D⊥AB1.
又AB1⊥DF,,
∴AB1⊥平面C1DF.
∵AA1=A1B1=,
∴四邊形AA1B1B為正方形.
又D為A1B1的中點,DF⊥AB1,
∴F為BB1的中點,
∴當點F為BB1的中點時,AB1⊥平面C1DF.
科目:高中數學 來源: 題型:
【題目】2002年國際數學家大會在北京召開,會標是以我國古代數學家趙爽的弦圖為基礎設計.弦圖是由四個全等的直角三角形與一個小正方形拼成的一個大正方形(如圖)如果小正方形的邊長為1,大正方形的邊長為5,直角三角形中較小的銳角為,則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、、、 為平面直角坐標系中兩兩不同的點。若,,且,則稱點、調和分割點、。已知平面上點、調和分割點 、.則下面說法正確的是()。
A. 可能是線段的中點
B. 可能是線段 的中點
C. 點、 可能同時在線段上
D. 點 、不可能同時在線段的延長線上
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個盒子中,放有標號分別為1,2,3的三張卡片,現從這個盒子中,有放回地先后抽得兩張卡片的標號分別為x、y,設O為坐標原點,點P的坐標為記.
(1)求隨機變量的最大值,并求事件“取得最大值”的概率;
(2)求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若一條直線與一個平面垂直,則稱此直線與平面構成一個“正交線面對”.那么在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構成的“正交線面對”的個數是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在海上進行工程建設時,一般需要在工地某處設置警戒水域;現有一海上作業(yè)工地記為點,在一個特定時段內,以點為中心的1海里以內海域被設為警戒水域,點正北海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東且與點相距10海里的位置,經過12分鐘又測得該船已行駛到點北偏東且與點相距海里的位置.
(1)求該船的行駛速度(單位:海里/小時);
(2)若該船不改變航行方向繼續(xù)行駛.試判斷它是否會進入警戒水域(點與船的距離小于1海里即為進入警戒水域),并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com