【題目】已知直線l1:x+2y﹣1=0,l2:2x+ny+5=0,l3:mx+3y+1=0,若l1∥l2且l1⊥l3,則m+n的值為( )
A.﹣10B.﹣2C.2D.10
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C: ,直線l:
(Ⅰ)求直線l所過定點(diǎn)A的坐標(biāo);
(Ⅱ)求直線l被圓C所截得的弦長最短時(shí)m的值及最短弦長;
(Ⅲ)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓N經(jīng)過點(diǎn)A(3,1),B(﹣1,3),且它的圓心在直線3x﹣y﹣2=0上.
(1)求圓N的方程;
(2)若點(diǎn)D為圓N上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從中這個(gè)數(shù)中取個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列這個(gè)數(shù)記為.
(1)當(dāng)時(shí),寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放(且)個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起有效去污的作用.
(1)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?
(2)若先投放2個(gè)單位的洗衣液,6分鐘后投放個(gè)單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): 取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,(為自然對(duì)數(shù)的底數(shù)),且曲線與在坐標(biāo)原點(diǎn)處的切線相同.
(1)求的最小值;
(2)若時(shí),恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點(diǎn)C是弧AB的中點(diǎn),E是線段AC的中點(diǎn),D是線段PB的中點(diǎn),且PO=2,OB=1.
(1)試在PB上確定一點(diǎn)F,使得EF∥面COD,并說明理由;
(2)求點(diǎn)到面COD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAB是正三角形,四邊形ABCD是矩形,且平面PAB⊥平面ABCD,PA=2,PC=4.
(Ⅰ)若點(diǎn)E是PC的中點(diǎn),求證:PA∥平面BDE;
(Ⅱ)若點(diǎn)F在線段PA上,且FA=λPA,當(dāng)三棱錐B﹣AFD的體積為時(shí),求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,底面是矩形,,,分別是,的中點(diǎn).
(1)求證:;
(2)已知點(diǎn)是的中點(diǎn),點(diǎn)是上一動(dòng)點(diǎn),當(dāng)為何值時(shí),平面?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com