【題目】市場(chǎng)上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放)個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起有效去污的作用.

1)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?

2)若先投放2個(gè)單位的洗衣液,6分鐘后投放個(gè)單位的洗衣液,要使接下來(lái)的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): .

【答案】(1;(2.

【解析】試題分析:(1)當(dāng)時(shí),代入,依題意有效去污滿(mǎn)足,即,解得,故有效去污時(shí)間可能達(dá)分鐘;(2)由于某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,故設(shè)項(xiàng)對(duì)應(yīng)的濃度為,此時(shí), , ,令,將濃度相加,得,分離參數(shù)得,利用換元法和基本不等式求得,故的最小值為.

試題解析:

1)由題意知有效去污滿(mǎn)足,則

,所以有效去污時(shí)間可能達(dá)8分鐘.

2, ,

,

,若令, ,

,

所以的最小值為1.6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1,求函數(shù)的極值和單調(diào)區(qū)間;

2若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的離心率為 ,橢圓Cy軸交于A、B兩點(diǎn),|AB|=2

)求橢圓C的方程;

)已知點(diǎn)P是橢圓C上的動(dòng)點(diǎn),且直線PAPB與直線x=4分別交于M、N兩點(diǎn),是否存在點(diǎn)P,使得以MN為直徑的圓經(jīng)過(guò)點(diǎn)(2,0)?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.過(guò)B1作l交橢圓于P、Q兩點(diǎn),使PB2垂直QB2,求直線l的方程__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行一個(gè)比賽類(lèi)型的娛樂(lè)節(jié)目, 兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績(jī)作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績(jī)沒(méi)有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績(jī)不少于21分,則獲得“晉級(jí)”.

(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊(duì)第六位選手的成績(jī);

(2)主持人從隊(duì)所有選手成績(jī)中隨機(jī)抽2個(gè),求至少有一個(gè)為“晉級(jí)”的概率;

(3)主持人從兩隊(duì)所有選手成績(jī)分別隨機(jī)抽取2個(gè),記抽取到“晉級(jí)”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1x+2y10,l22x+ny+50,l3mx+3y+10,若l1l2l1l3,則m+n的值為(

A.10B.2C.2D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線平面,直線平面,給出下列命題:

;

;

其中正確命題的序號(hào)是

A.①②③ B.②③④ C.①③ D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程.

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在D上的函數(shù)f(x)滿(mǎn)足:對(duì)任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的上界。

(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請(qǐng)說(shuō)明理由;

(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案