在三角形ABC中,a=2,A=30°,C=45°,則三角形的面積S的值是( 。
A、
2
B、
3
+1
C、
1
2
3
+1)
D、2
2
考點:正弦定理
專題:解三角形
分析:由正弦定理得到c邊,再由三角形的面積公式可知,S=
1
2
acsinB=
3
+1
解答: 解:由a=2,A=30°,C=45°,且
a
sinA
=
c
sinC

c=2
2

故sinB=sin(180°-30°-45°)=sin(60°+45°)=
6
+
2
4

S=
1
2
acsinB=
3
+1
,
故選:B
點評:本題主要考查了三角形的面積公式的簡單應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,不等式
x+y-4≤0
x-y+a≥0
x≥0
y≥0
(a為常數(shù)且0<a<4)表示的平面區(qū)域的面積為7,則3x-2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=
m+i
1-i
(i為虛數(shù)單位)為實數(shù),則實數(shù)m=( 。
A、0B、-1C、-1或1D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(6,x)(x∈R)則“x=8”是“|
a
|=10”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|y=ln(3x-1)},B={y|y=sin(x+2)},則(∁UA)∩B=(  )
A、(
1
3
,+∞)
B、(0,
1
3
]
C、[-1,
1
3
]
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓F的圓心為雙曲線
x2
5
-
y2
4
=1的右焦點,且與該雙曲線的漸近線相切,則圓F的方程為( 。
A、(x+3)2+y2=4
B、(x+3)2+y2=2
C、(x-3)2+y2=4
D、(x-3)2+y2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
=(2,1),
b
=(m2,m),若“m=2”是“
a
b
共線”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>c,求證:ab2+bc2+ca2<a2b+b2c+c2a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c為其三條邊,試比較a2+b2+c2與2(ab+bc+ac)的大小.

查看答案和解析>>

同步練習冊答案