【題目】2019年初,某市為了實(shí)現(xiàn)教育資源公平,辦人民滿(mǎn)意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點(diǎn)中學(xué)實(shí)行分?jǐn)?shù)和搖號(hào)相結(jié)合的錄取辦法.該市教育管理部門(mén)為了了解市民對(duì)該招生辦法的贊同情況,隨機(jī)采訪(fǎng)了440名市民,將他們的意見(jiàn)和是否近三年家里有小升初學(xué)生的情況進(jìn)行了統(tǒng)計(jì),得到如下的2×2列聯(lián)表.

贊同錄取辦法人數(shù)

不贊同錄取辦法人數(shù)

合計(jì)

近三年家里沒(méi)有小升初學(xué)生

180

40

220

近三年家里有小升初學(xué)生

140

80

220

合計(jì)

320

120

440

1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);

2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再?gòu)倪@6人中隨機(jī)抽出3人進(jìn)行電話(huà)回訪(fǎng),求3人中恰有1人近三年家里沒(méi)有小升初學(xué)生的概率.

附:,其中.

P()

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)能在犯錯(cuò)誤概率不超過(guò)0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);(20.6

【解析】

1)根據(jù)列聯(lián)表計(jì)算,對(duì)照所給表格數(shù)據(jù)可得結(jié)論;

2)由分層抽樣知從近三年家里沒(méi)有小升初學(xué)生的人員中抽出2人,分別記為,,從近三年家里有小升初學(xué)生的人員中抽出4人,分別記為,,,則從這6人中隨機(jī)抽出3人的抽法,可以分別列舉出來(lái),其中恰有1人近三年家里沒(méi)有小升初學(xué)生的情況也可以列舉出來(lái),計(jì)數(shù)后可得概率.

1)假設(shè)是否贊同小升初錄取辦法與近三年是否有家里小升初學(xué)生無(wú)關(guān),

的觀(guān)測(cè)值,因?yàn)?/span>

所以能在犯錯(cuò)誤概率不超過(guò)0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān).

1)設(shè)從近三年家里沒(méi)有小升初學(xué)生的人員中抽出人,從近三年家里有小升初學(xué)生的人員中抽出人,

由分層抽樣的定義可知,解得,.

方法一:設(shè)事件M3人中恰有1人近三年家里沒(méi)有小升初學(xué)生.在抽出的6人中,近三年家里沒(méi)有小升初學(xué)生的2人,分別記為,,近三年家里有小升初學(xué)生的4人,分別記為,,,,則從這6人中隨機(jī)抽出3人有20種不同的抽法,所有的情況如下:

{,,}{,,}{,},{,,},{,},{,}{,,}{,,},{,,}{,},{,}{,},{,},{,},{,},{,},{,}{,},{,,},{,}.

其中恰有1人近三年家里沒(méi)有小升初學(xué)生的情況有12種,分別為:

{,,},{,},{,,},{,,},{,,},{,},{,},{,,},{,}{,,},{,,},{,},

所以3人中恰有1人近三年家里沒(méi)有小升初學(xué)生的概率為.

方法二:設(shè)事件M3人中恰有1人近三年家里沒(méi)有小升初學(xué)生,在抽出的6人中,近三年家里沒(méi)有小升初學(xué)生的有2人,近三年家里有小升初學(xué)生的有4人,則從這6人中隨機(jī)抽出3人有種不同的抽法,從這6人中隨機(jī)抽出的3人中恰有1人近三年家里沒(méi)有小升初學(xué)生的情況共有.

所以3人中恰有1人近三年家里沒(méi)有小升初學(xué)生的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.長(zhǎng)沙某通信公司為了更好地滿(mǎn)足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購(gòu)買(mǎi)人數(shù)(單位:萬(wàn)人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線(xiàn)性回歸模型擬合的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);

(2)①求出關(guān)于的回歸方程;

②若該通信公司在一個(gè)類(lèi)似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長(zhǎng)沙市一個(gè)月內(nèi)購(gòu)買(mǎi)該流量包的人數(shù)能否超過(guò)20 萬(wàn)人.

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),回歸直線(xiàn)方程

其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為:(其中為常數(shù)).

(1)若曲線(xiàn)與曲線(xiàn)有兩個(gè)不同的公共點(diǎn),求的取值范圍;

(2)當(dāng)時(shí),求曲線(xiàn)上的點(diǎn)與曲線(xiàn)上點(diǎn)的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車(chē)革命早已展開(kāi),通過(guò)以新能源汽車(chē)替代汽/柴油車(chē),中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車(chē)行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車(chē)生產(chǎn)設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本2500萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車(chē)售價(jià)5萬(wàn)元,且全年內(nèi)生產(chǎn)的車(chē)輛當(dāng)年能全部銷(xiāo)售完.

1)求出2018年的利潤(rùn)Lx)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額-成本)

22018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的方程為,是橢圓上的一點(diǎn),且在第一象限內(nèi),過(guò)且斜率等于-1的直線(xiàn)與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為

(1)證明:直線(xiàn)的斜率為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x2+2alnx.

(1)若函數(shù)fx)的圖象在(2,f2))處的切線(xiàn)斜率為1,求實(shí)數(shù)a的值;

(2)若函數(shù)[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“科技引領(lǐng),布局未來(lái)”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量。年,某企業(yè)連續(xù)年累計(jì)研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營(yíng)投入的比值記為研發(fā)投入占營(yíng)收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線(xiàn)圖和條形圖,下列結(jié)論錯(cuò)誤的使( )

A. 年至年研發(fā)投入占營(yíng)收比增量相比年至年增量大

B. 年至年研發(fā)投入增量相比年至年增量小

C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加

D. 該企業(yè)來(lái)連續(xù)年來(lái)研發(fā)投入占營(yíng)收比逐年增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,矩形、、,將矩形折疊,使O點(diǎn)落在線(xiàn)段上,設(shè)折痕所在直線(xiàn)的斜率為k,則k的取值范圍是( 

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的個(gè)數(shù)是( )

1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.

2)如果一組數(shù)中每個(gè)數(shù)減去同一個(gè)非零常數(shù),則這一組數(shù)的平均數(shù)改變,方差不改變.

3)一個(gè)樣本的方差s2=[x32+X—32+ +X32],則這組數(shù)據(jù)總和等于60.

4)數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為.

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案