【題目】在直角坐標(biāo)系中,曲線(xiàn)上的點(diǎn)均在曲線(xiàn)外,且對(duì)上任意一點(diǎn),到直線(xiàn)的距離等于該點(diǎn)與曲線(xiàn)上點(diǎn)的距離的最小值.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于不同的兩點(diǎn)、,過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于另一點(diǎn),且直線(xiàn)過(guò)點(diǎn),求證:直線(xiàn)過(guò)定點(diǎn).
【答案】(1);(2)
【解析】分析:(1)設(shè),則到直線(xiàn)的距離等于,又到圓上的點(diǎn)的距離的最小值為,將 ,化簡(jiǎn)可得結(jié)果;(2)設(shè)點(diǎn),可得直線(xiàn)的方程,直線(xiàn)的方程與直線(xiàn)的方程,結(jié)合點(diǎn)在直線(xiàn)上,可得直線(xiàn)的方程得,從而可得結(jié)果.
詳解:(1)由已知得曲線(xiàn)是以為圓心,為半徑的圓.
設(shè),則到直線(xiàn)的距離等于,又到圓上的點(diǎn)的距離的最小值為,
所以由已知可得 ,化簡(jiǎn)得,
所以曲線(xiàn)的方程為.
(2)設(shè)點(diǎn),易得直線(xiàn)的斜率均存在,
從而直線(xiàn)的斜率,
所以直線(xiàn)的方程是,
即,
同理直線(xiàn)的方程為,
直線(xiàn)的方程為,
點(diǎn)在直線(xiàn)上,所以,即,
點(diǎn)在直線(xiàn)上,,即,
化簡(jiǎn)得,
代入直線(xiàn)的方程得,
即 直線(xiàn)過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)試問(wèn):函數(shù)的圖象上是否存在關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的點(diǎn),若存在,求出這些點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(3)若方程的三個(gè)實(shí)數(shù)根、、滿(mǎn)足:<<,且,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是一門(mén)以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線(xiàn)段的長(zhǎng)度為,在線(xiàn)段上取兩個(gè)點(diǎn),,使得,以為一邊在線(xiàn)段的上方做一個(gè)正六邊形,然后去掉線(xiàn)段,得到圖2中的圖形;對(duì)圖2中的最上方的線(xiàn)段作相同的操作,得到圖3中的圖形;依此類(lèi)推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線(xiàn)段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對(duì)任意的正整數(shù),都有;
④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有.
其中真命題的序號(hào)是________________(請(qǐng)寫(xiě)出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 若方程恰有三個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知底面為菱形,,,為對(duì)角線(xiàn)與的交點(diǎn),底面且
(1)求異面直線(xiàn)與所成角的余弦值;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓與橢圓的離心率相同.
(1)求的值;
(2)過(guò)橢圓的左頂點(diǎn)作直線(xiàn),交橢圓于另一點(diǎn),交橢圓于兩點(diǎn)(點(diǎn)在之間).①求面積的最大值(為坐標(biāo)原點(diǎn));②設(shè)的中點(diǎn)為,橢圓的右頂點(diǎn)為,直線(xiàn)與直線(xiàn)的交點(diǎn)為,試探究點(diǎn)是否在某一條定直線(xiàn)上運(yùn)動(dòng),若是,求出該直線(xiàn)方程;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是以,為焦點(diǎn)的雙曲線(xiàn)上的一點(diǎn),且,則的周長(zhǎng)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)的性質(zhì)描述,正確的是__________.①的定義域?yàn)?/span>;②的值域?yàn)?/span>;③的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);④在定義域上是增函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com