【題目】關(guān)于函數(shù)的性質(zhì)描述,正確的是__________.的定義域為;②的值域為;③的圖象關(guān)于原點對稱;④在定義域上是增函數(shù).

【答案】①②③

【解析】

由被開方式非負(fù)和分母不為0,解不等式可得fx)的定義域,可判斷①;化簡fx),討論0x≤1,﹣1≤x0,分別求得fx)的范圍,求并集可得fx)的值域,可判斷②;由f(﹣1)=f1)=0,f(x)不是增函數(shù),可判斷④;由奇偶性的定義得fx)為奇函數(shù),可判斷③.

①,由,解得﹣1≤x≤1x≠0

可得函數(shù)的定義域為[1,0)∪(0,1],故①正確;

②,由①可得fx)=,即fx)=﹣,

當(dāng)0x≤1可得fx)=﹣∈(﹣1,0];當(dāng)﹣1≤x0可得fx)=[0,1).

可得fx)的值域為(﹣1,1),故②正確;

③,由fx)=﹣的定義域為[1,0)∪(01],關(guān)于原點對稱,

f(﹣x)==﹣fx),則fx)為奇函數(shù),即有fx)的圖象關(guān)于原點對稱,故③正確.

④,由f(﹣1)=f1)=0,則fx)在定義域上不是增函數(shù),故④錯誤;

故答案為:①②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

,確定函數(shù)的單調(diào)區(qū)間.

,且對于任意, 恒成立,求實數(shù)的取值范圍.

)求證:不等式對任意正整數(shù)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

總計

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(實數(shù)為常數(shù))

1)當(dāng)時,證明上單調(diào)遞減;

2)若,且為偶函數(shù),求實數(shù)的值;

3)小金同學(xué)在求解函數(shù)的對稱中心時,發(fā)現(xiàn)函數(shù)是一個復(fù)合函數(shù),設(shè),,則,顯然有對稱中心,設(shè)為,有反函數(shù),則的對稱中心為,請問小金的做法是否正確?如果正確,請給出證明,并直接寫出當(dāng)的對稱中心;如果錯誤,請舉出反例,并用正確的方法直接寫出當(dāng)的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中、為已知實常數(shù),.

下列所有正確命題的序號是____________. 

①若,則對任意實數(shù)恒成立;

②若,則函數(shù)為奇函數(shù);

③若,則函數(shù)為偶函數(shù);

④當(dāng)時,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題P:不等式的解集中的整數(shù)有且僅有-10,1.a的取值范圍.

命題Q:集合.

1)分別求命題P、Q為真命題時的實數(shù)a的取值范圍;

2)當(dāng)實數(shù)a取何值時,命題P、Q中有且僅有一個為真命題;

3)設(shè)P、Q皆為真時a的取值范圍為集合S,,若全集,,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于兩個變量xy進行回歸分析,得到一組樣本數(shù)據(jù):則下列說法不正確的是(

A.由樣本數(shù)據(jù)得到的回歸直線必經(jīng)過樣本點中心

B.殘差平方和越小的模型,擬合的效果越好

C.來刻畫回歸效果,的值越小,說明模型的擬合效果越好

D.若變量yx之間的相關(guān)系數(shù),則變量yx之間具有線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)為偶函數(shù),且在區(qū)間內(nèi)是單調(diào)遞增函數(shù).

(1)求函數(shù)的解析式;

(2)設(shè)函數(shù),若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)fx),當(dāng)x≥0時,fx)=x2x

1)求函數(shù)fx)的解析式;

2)若函數(shù)gxx≠0),求證:函數(shù)gx)在(0,+∞)單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊答案