已知a>0,函數(shù)f(x)=ax-bx2.

(1)當(dāng)b>0時,若對任意x∈R都有f(x)≤1,證明a≤2;

(2)當(dāng)b>1時,證明對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2.

證明:(1)依題意設(shè)對任意x∈R都有f(x)≤1,

f(x)=-b(x-)2+,

f()= ≤1.

又∵a>0,b>0,∴a≤2.

(2)必要性:對任意x∈[0,1],
|f(x)|≤1f(x)≥-1,

f(1)≥-1,即a-b≥-1.∴ab-1.

對任意x∈[0,1],|f(x)|≤1f(x)≤1,

b>1,可以推出f()≤1,即a·-1≤1.

a≤2.

b-1≤a≤2.

充分性:∵b>1,ab-1,對任意x∈[0,1],可以推出ax-bx2b(x-x2)-x≥-x≥-1,即ax-bx2≥-1.

b>1,a≤2,對任意x∈[0,1],可以推出ax-bx2≤2x-bx2≤1,即ax-bx3≤1.

∴-1≤f(x)≤1.

綜上,當(dāng)b>1時,對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當(dāng)a=
1
8

①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊答案