若曲線y=aln(x+1)在點(0,0)處的切線方程為y=2x,則a=
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求出函數(shù)的導數(shù),求出切線的斜率,再由切線方程,即可得到斜率,進而得到a.
解答: 解:y=aln(x+1)的導數(shù)為:y′=
a
x+1
,
則在點(0,0)處的切線斜率為a,
又在點(0,0)處的切線方程為y=2x,
則有a=2,
故答案為:2.
點評:本題考查導數(shù)的幾何意義:函數(shù)在某點處的導數(shù)即為曲線在該點處的切線的斜率,考查運算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}中,a1=1,an+1=2an+1.
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式.
(3)設bn=n(an+1),求數(shù)列{bn}的前n項的和sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|x>-1,x∈Q},則( 。
A、Φ∉A
B、
2
∉A
C、{
2
}∈A
D、{
2
}?A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
x
2
=
y
3
=
z
4
,則
x2-y2
y2+z2
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,4},那么A的非空真子集的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:x+ay-2=0,(a為實數(shù)).傾斜角α的取值范圍是( 。
A、[0,π)
B、(0,π)
C、(0,
π
2
)∪(
π
2
,π)
D、[0,
π
2
)∪(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x2,2x-1,-4},B={x-5,1-x,9},B∩A={9},
(1)求X的值       
(2)求A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

使函數(shù)f(x)=sin(2x+θ)+
3
cos(2x+θ)為奇函數(shù)的θ的一個值是( 。
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差為d,前n項和為Sn,若S5=25,只有S9是Sn的最大值,則( 。
A、-
5
6
<d<-
5
7
B、-
5
6
≤d≤-
5
7
C、-
4
5
<d<-1
D、-
4
5
≤d≤-1

查看答案和解析>>

同步練習冊答案