精英家教網 > 高中數學 > 題目詳情
選修4-1:幾何證明選講
中,AB=AC,過點A的直線與其外接圓交于點P,交BC延長線于點D.

(1)求證:
(2)若AC=3,求的值.
(1)見解析;  (2)
(1)用分析法證明:要證:須證:,然后證.
(2) 解本小題的關鍵是證明,可得到,進而求出.
(1),  ,

(2),
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,⊙的半徑OB垂直于直徑AC,為AO上一點,    的延長線交⊙于點N,過點N的切線交CA的延長線于點P.

(1)求證:;
(2)若⊙的半徑為,OA=,求的長.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=8,AB=10,O為BC上一點,以O為圓心,OB為半徑作半圓與BC邊、AB邊分別交于點D、E,連接DE。

(1)若BD=6,求線段DE的長;
(2)過點E作半圓O的切線,交AC于點F,
證明:AF=EF。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,⊙O和⊙相交于兩點,過A作兩圓的切線分別交兩圓于C,D兩點,連接DB并延長交⊙O于點E。證明
(Ⅰ)
(Ⅱ)。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖1,在平面直角坐標系中,邊長為1的正方形OABC的頂點B在軸的正半軸上,O為坐標原點.現(xiàn)將正方形OABC繞O點按順時針方向旋轉.
 (1)當點A第一次落到軸正半軸上時,求邊BC在旋轉過程中所掃過的面積;
。2)若線段AB與軸的交點為M(如圖2),線段BC與直線的交點為N.設的周長為,在正方形OABC旋轉的過程中值是否有改變?并說明你的結論;
(3)設旋轉角為,當為何值時,的面積最?求出這個最小值, 并求出此時△BMN的內切圓半徑.

      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,⊙O是邊長為2的等邊△ABC的內切圓,則⊙O的半徑為         。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則(     )
A.B.3C.D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

.(選修4—1:幾何證明選講)
如圖,已知是⊙的直徑,是⊙的弦,的平分線交⊙,過點的延長線于點,于點.若,則的值為          .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(幾何證明選講選做題)如圖4,是圓上的兩點,且,
的中點,連接并延長交圓于點,則        

查看答案和解析>>

同步練習冊答案