函數(shù)f(x)=
(x+2)2
|x|-x
的定義域為( 。
A、{x|x>0}
B、{x|x<0}
C、{x|x>0,x≠1}
D、{x|x<0.x≠-2}
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:直接由分母內(nèi)根式內(nèi)部的代數(shù)式大于0求解原函數(shù)的定義域.
解答: 解:要使原函數(shù)有意義,則|x|-x>0,
即|x|>x.
∴x<0.
∴原函數(shù)的定義域為{x|x<0}.
故選:B.
點評:本題考查了函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

不等關(guān)系有下列基本性質(zhì):
①a>b,b>c⇒a>c;
②a>b⇒a+c>b+c;
③a>b>0,c>d>0⇒ac>bd;
④a>b>0⇒an>bn
我們用記號“|”表示兩個正整數(shù)間的整除關(guān)系,如3|12表示3整除12.試類比課本中不等關(guān)系的基本性質(zhì),寫出整除關(guān)系的兩個性質(zhì).①
 
;②
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=|x-3|+|x-4|.若存在實數(shù)x滿足f(x)≤ax-1則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知圓的極坐標方程為ρ=8sinθ,則該圓的圓心到直線
x=t
y=2-t
(t為參數(shù))的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,則P到對角線BD的距離為( 。
A、
1
2
29
B、
13
5
C、
3
2
D、
3
2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若|cosθ|=cosθ,|tanθ|=-tanθ,則
θ
2
的終邊在( 。
A、第一、三象限
B、第二、四象限
C、第一、三象限或x軸上
D、第二、四象限或x軸上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角△ABC中,角A,B,C的對邊分別為a,b,c,外接圓半徑為1,D為邊BC上一點,
AD
BC
=0,向量
m
=(sinA,a),
n
=(sinB,c),且
m
n
,則AD+BC的取值范圍為( 。
A、(0,
5
+1)
B、(2,
5
+1]
C、(3,
5
+1)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l的參數(shù)方程是
x=
2
t
y=
2
t+4
2
(其中t為參數(shù)),圓C的極坐標方程ρ=2cos(θ+
π
4
),過直線上的點向圓引切線,則切線長的最小值是( 。
A、
2
B、2
C、
3
D、2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[-4,4]上的奇函數(shù),g(x)=f(x-2)+
1
3
.當x∈[-2,0)∪(0,2]時,g(x)=
1
2|x|-1
,g(0)=0,則方程g(x)=log 
1
2
(x+1)的解的個數(shù)為( 。
A、0B、2C、4D、6

查看答案和解析>>

同步練習冊答案