函數(shù)y-ex在x=0處的切線方程為( 。
A、y=xB、y=0
C、y=2xD、y=x+1
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求出函數(shù)的導函數(shù),把x=0代入導函數(shù)求出的函數(shù)值即為切線方程的斜率,把x=0代入函數(shù)解析式中得到切點的縱坐標,進而確定出切點坐標,根據(jù)求出的斜率和切點坐標寫出切線方程即可.
解答: 解:由題意得:y′=ex,把x=0代入得:y′|x=0=1,即切線方程的斜率k=1,
且把x=0代入函數(shù)解析式得:y=1,即切點坐標為(0,1),
則所求切線方程為:y-1=x,即y=x+1.
故選D.
點評:此題考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,考查運算能力,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=2BC=2,∠A=
π
6
,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

儲油30m3的油桶,每分鐘流出
3
4
m3的油,則桶內(nèi)剩余油量Q(m3)以流出時間t(分)為自變量的函數(shù)的定義域為( 。
A、[0,+∞)
B、[0,
45
2
]
C、(-∞,40]
D、[0,40]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
3
+
y2
b2
=1(b>0)的左、右焦點分別為F1,F(xiàn)2,直線AB過右焦點F2,和橢圓C交于A,B兩點,且滿足
AF1
=2
F2B
,∠F1AB=90°,則橢圓C的離心率為( 。
A、
3
3
B、
5
3
C、
30
6
D、
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,若輸入m=5,n=3,則輸出a,i分別是( 。
A、a=15,i=3
B、a=15,i=5
C、a=10,i=3
D、a=8,i=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-1≤x≤3},集合B={x|m-2≤x≤m+2}.
(1)若B⊆A,求m值;
(2)若A⊆∁RB,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線2x+3y+a=0與兩坐標軸圍成的三角形的面積為12,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,橢圓上點到直線l:x=4的最短距離為2.
(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦,P是直線l上的任意點,記PA,PF,PB的斜率分別為k1,k2,k3.問:是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},若∁RB?A,求a的取值范圍.

查看答案和解析>>

同步練習冊答案