【題目】學校某研究性學習小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學生學習效果最佳?請說明理由.
【答案】(1);(2)老師在時段內(nèi)安排核心內(nèi)容,能使得學生學習效果最佳.
【解析】
試題(1)先根據(jù)頂點式設二次函數(shù)解析式,再代入點求開口,最后利用待定系數(shù)法求一次函數(shù)解析式,寫成分段函數(shù)形式(2)由題意解不等式,先分段求解,再求并集
試題解析:解:(1)當x∈(0,12]時,
設f(x)=a(x﹣10)2+80
過點(12,78)代入得,
則
當x∈[12,40]時,
設y=kx+b,過點B(12,78)、C(40,50)
得,即y=﹣x+90
則的函數(shù)關(guān)系式為
(2)由題意得,或
得4<x≤12或12<x<28,
4<x<28
則老師就在x∈(4,28)時段內(nèi)安排核心內(nèi)容,能使得學生學習效果最佳.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓,且點到橢圓C的兩焦點的距離之和為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ) 若,是橢圓上的兩個點,線段的中垂線的斜率為,且直線與交于點,求證:點在直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:an+1-an=d(n∈N*),前n項和記為Sn,a1=4,S3=21.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足b1=,bn+1-bn=2an,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四面體及其三視圖如圖所示,過棱的中點作平行于、的平面分別交四面體的棱、、于點、、.
(1)求證:四邊形是矩形;
(2)求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
()求橢圓的方程.
()設動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點, (兩點均不在坐標軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)y=f(f(x))-1的零點個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,過點的直線的參數(shù)方程為(為參數(shù)).以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線相交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的頂點, 在橢圓上, 在直線上,且.
()求橢圓的離心率.
()當邊通過坐標原點時,求的長及的面積.
()當,且斜邊的長最大時,求所在直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com