已知:橢圓數(shù)學(xué)公式(a>b>0)過(0,1)點(diǎn),離心率數(shù)學(xué)公式;直線l:y=kx+m(m>0)與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點(diǎn)A、B,(O為坐標(biāo)原點(diǎn)).
Ⅰ.求橢圓C的方程及m與k的關(guān)系式m=f(k);
Ⅱ.設(shè)數(shù)學(xué)公式=θ,且滿足數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式求直線l的方程;
Ⅲ.在Ⅱ.的條件下,求三角形AOB的面積.

解:Ⅰ.∵橢圓,過(0,1)點(diǎn),∴b=1,
∴a2=2,
∴橢圓C方程為:;
∵直線l:y=kx+m(m>0)與圓x2+y2=1相切,
,,即;
Ⅱ.消去y得(2k2+1)x2+4kmx+2m2-2=0,
△=8k2>0,∴k≠0
設(shè)A(x1,y1),B(x2,y2),則,=||•||•cosθ==;

k2=1,k=±1;∴=,
直線l的方程為:,
Ⅲ.由Ⅱ.知k=±1;消去y得,
,由弦長公式:,
,

∴直線AB過點(diǎn);
∵<>=θ,
,kOB=tanθ=±2
∴l(xiāng)OB:y=±2x,與
聯(lián)立解得:,
,,
由兩點(diǎn)得AB的方程為:,
由前面解知:|OA|為三角形的底邊,|yB|為三角形的高,,S△AOB=||•|yB|=××=
分析:Ⅰ.由題意可知b=1,a2=2,由此可以求出橢圓C的方程.再由直線l:y=kx+m(m>0)與圓x2+y2=1相切,能夠?qū)С鰉與k的關(guān)系式m=f(k).
Ⅱ.由消去y得(2k2+1)x2+4kmx+2m2-2=0,然后由根的判別式和根與系數(shù)的關(guān)系求直線l的方程.
Ⅲ.|OA|為三角形的底邊,|yB|為三角形的高,由此能夠推導(dǎo)出三角形AOB的面積.
點(diǎn)評(píng):本題考查橢圓知識(shí)的綜合運(yùn)用,有一定的難度,在解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:橢圓數(shù)學(xué)公式(a>b>0),過點(diǎn)A(-a,0),B(0,b)的直線傾斜角為數(shù)學(xué)公式,原點(diǎn)到該直線的距離為數(shù)學(xué)公式
(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F(xiàn)兩點(diǎn),若數(shù)學(xué)公式,求直線EF的方程;
(3)是否存在實(shí)數(shù)k,直線y=kx+2交橢圓于P,Q兩點(diǎn),以PQ為直徑的圓過點(diǎn)D(-1,0)?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:橢圓數(shù)學(xué)公式(a>b>0),過點(diǎn)A(-a,0),B(0,b)的直線傾斜角為數(shù)學(xué)公式,原點(diǎn)到該直線的距離為數(shù)學(xué)公式
(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F(xiàn)兩點(diǎn),若數(shù)學(xué)公式,求直線EF的方程;
(3)對(duì)于D(-1,0),是否存在實(shí)數(shù)k,直線y=kx+2交橢圓于P,Q兩點(diǎn),且|DP|=|DQ|?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省唐山一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知:橢圓(a>b>0),過點(diǎn),的直線傾斜角為,原點(diǎn)到該直線的距離為
(1)求橢圓的方程;
(2)斜率大于零的直線過與橢圓交于E,F(xiàn)兩點(diǎn),若,求直線EF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省唐山一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知:橢圓(a>b>0),過點(diǎn),的直線傾斜角為,原點(diǎn)到該直線的距離為
(1)求橢圓的方程;
(2)斜率大于零的直線過與橢圓交于E,F(xiàn)兩點(diǎn),若,求直線EF的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案