已知平面上的動點Q到定點F(0,1)的距離與它到定直線y=3的距離相等.
(1)求動點Q的軌跡C1的方程;
(2)過點作直線l1交C2:x2=4y于A,B兩點(在第一象限).若|BF|=2|AF|,求直線l1的方程.
考點:軌跡方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)出Q的坐標,根據(jù)條件推斷出x和y的關(guān)系式,化簡求得x和y的關(guān)系,即曲線的方程.
(2)設(shè)出A,B,利用拋物線的定義,表示出|AF|和|BF|,進而利用|BF|=2|AF|,求得y2和y1的關(guān)系,令直線AB的方程x=t(y-1),與拋物線方程聯(lián)立消去x,表示出y1+y2和y1y2,聯(lián)立求得y1和y2,代入方程②求得t,進而求得t.則直線AB的方程可得.
解答: 解:(1)設(shè)Q(x,y),
由條件有
x2+(y-1)2
=|y-3|,
化簡得曲線C1的方程為:x2=-4y+8.
(2)設(shè)A(x1,y1),B(x2,y2),則|AF|=y1+1,|BF|=y2+1,
由|BF|=2|AF|,得y2=2y1+1①
令直線AB方程為x=t(y-1),代入拋物線方程,可得t2y2-(2t2+4)y+t2=0,
∴y1+y2=
2t2+4
t2
②,y1y2=1③
由①和③聯(lián)立解得:y1=
1
2
,y2=2
代入②得:t2=8
依題意直線AB的斜率大于0,即t>0,
∴t=2
2

故直線AB的方程為x-2
2
y+2
2
=0.
點評:本題主要考查了直線與圓錐曲線的綜合問題.考查了分析推理和基本的運算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,BA⊥平面AA1C1C,AB=2
2
,AA1=AC=4,∠A1C1C=
π
3

(1)求證:AB1⊥BC;
(2)求直線B1C1與平面B1A1C所成的角;
(3)求點C1到平面AB1C的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AB,BC=
2
AB
,點E是棱PB中點,點F在PC上,且PF=
1
4
PC

(1)求證:AE⊥PC;
(2)求證:平面AEF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的多面體中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,∠BAD=
π
3

(1)求證:平面BCF∥面AED;
(2)若BF=BD=a,求四棱錐A-BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABC,AB=6,BC=8,AC=10,求證:平面PAB⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一幾何體的三視圖如圖所示,點F,G分別為AC,DE的中點.
(1)求證:FG∥平面ABE;
(2)求證:平面ACE⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,AB∥DC,DC=2AB,E為PC的中點.
(1)求證:BE∥平面PAD;
(2)若AB⊥平面PAD,AD⊥PB,求證:PA⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=
π
4
,B=
π
3
,BC=2.
(Ⅰ)求AC的長;  
(Ⅱ)求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
3
-tanx
lg(tanx-1)
的定義域是
 

查看答案和解析>>

同步練習冊答案