(本小題12分)設(shè),,函數(shù),
(Ⅰ)設(shè)不等式的解集為C,當(dāng)時,求實數(shù)取值范圍;
(Ⅱ)若對任意,都有成立,試求時,的值域;
(Ⅲ)設(shè) ,求的最小值.
解:(1),因為,二次函數(shù)圖像
開口向上,且恒成立,故圖像始終與軸有兩個交點,由題意,要使這兩個
交點橫坐標(biāo),當(dāng)且僅當(dāng):
, 解得:
(2)對任意都有,所以圖像關(guān)于直線對稱,
所以,得.所以為上減函數(shù).
;.故時,值域為.
(3)令,則
(i)當(dāng)時,,
當(dāng),則函數(shù)在上單調(diào)遞減,
從而函數(shù)在上的最小值為.
若,則函數(shù)在上的最小值為,且.
(ii)當(dāng)時,函數(shù)
若,則函數(shù)在上的最小值為,且
若,則函數(shù)在上單調(diào)遞增,
從而函數(shù)在上的最小值為.
綜上,當(dāng)時,函數(shù)的最小值為
當(dāng)時,函數(shù)的最小值為
當(dāng)時,函數(shù)的最小值為
解析
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知函數(shù),(),若同時滿足以下條件:
①在D上單調(diào)遞減或單調(diào)遞增
② 存在區(qū)間[]D,使在[]上的值域是[],那么稱()為閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間[];若不是請說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt∆FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=10米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=,求此時管道的長度L;
(3)問:當(dāng)θ取何值時,污水凈化效果最好?
并求出此時管道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù)
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達式
(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0
有兩個實根為x1="3," x2=4.(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
設(shè),,函數(shù)
(1)設(shè)不等式的解集為C,當(dāng)時,求實數(shù)取值范圍
(2)若對任意,都有成立,試求時,的值域
(3)設(shè) ,求的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com