15.觀察下列各式:55=3 125,56=15 625,57=78 125,…,則52017的末四位數(shù)字為( 。
A.3 125B.5 625C.8 125D.0 625

分析 觀察發(fā)現(xiàn),底數(shù)為5的冪的末四位數(shù)字以4為周期,呈周期性循環(huán).

解答 解:55=3 125,56=15 625,57=78 125,58末四位數(shù)字為0 625,59末四位數(shù)字為3 125,所以周期為4,
∵2017÷4=504…1,
∴52017的末四位數(shù)字為3 125,
故選A.

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.(1)求f(x)=tan(3x-$\frac{π}{4}$)的定義域;
(2)求函數(shù)y=lg(sinx)+$\sqrt{cosx-\frac{1}{2}}$的定義域;
(3)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖象如圖所示,求f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{6x}{{1+{x^2}}}$在區(qū)間[0,3]的最大值為(  )
A.3B.4C.2D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義函數(shù)的“拐點”如下:設f′(x)是函數(shù)f(x)的導數(shù),f′(x)是函數(shù)f(x)的導函數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”,已知任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心:若f(x)=x3-9x2+20x-4,數(shù)列{an}為等差數(shù)列,a5=3,則f(a1)+f(a2)+…+f(a9)=(  )
A.44B.36C.27D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知正四棱錐的體積是48cm3,高為4cm,則該四棱錐的側(cè)面積是60cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=2|x+a|+|x-$\frac{1}{a}$|(a≠0).
(1)當a=1時,解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(-x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知α是銳角,若cos(α+$\frac{π}{6}$)=$\frac{5}{13}$,則sin(α-$\frac{π}{12}$)=(  )
A.-$\frac{17\sqrt{2}}{26}$B.-$\frac{7\sqrt{2}}{26}$C.$\frac{7\sqrt{2}}{26}$D.$\frac{17\sqrt{2}}{26}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知:P為橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{3}=1$(a>0)上一點,Q為圓O:x2+y2=4上一點,F(xiàn)1、F2分別為橢圓C的左、右焦點,$\overrightarrow{{F}_{1}P}$=λ$\overrightarrow{OQ}$(λ>0),$\overrightarrow{{F}_{2}Q}$•$\overrightarrow{PQ}$=0.
(1)求a的值;
(2)若λ=$\frac{5}{4}$時,求四邊形PF1F2Q的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{$\frac{{a}_{n}}{2n-1}$}的前n項和為Sn,若Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4,則數(shù)列{an}的前n項和Tn=36-$(8n+36)×(\frac{4}{5})^{n}$.

查看答案和解析>>

同步練習冊答案