設(shè)函數(shù).
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實數(shù)的取值范圍.
(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,;(2).
解析試題分析:(1)本題函數(shù)是分式型的,用公式求,再令,,,求出函數(shù)的單調(diào)區(qū)間;(2)要恒成立,即恒成立,構(gòu)造新函數(shù),利用分類討論,導(dǎo)數(shù)法,求出函數(shù)的最小值,根據(jù)恒成立,則有求出實數(shù)的取值范圍.
試題解析:(1),由,解得,當時,,單調(diào)遞增;當時,,單調(diào)遞減.
所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,其最大值為. 5分
(2)由恒成立,
可知恒成立,
令, 7分
①當時,,
所以,
因此在上單調(diào)遞增,
②當時,,
所以,
因為,所以,
,,
因此在上單調(diào)遞減, 10分
綜上①②可知在時取得最小值,
因為,,即恒成立,
所以. 14分
考點:利用導(dǎo)數(shù)法求函數(shù)的單調(diào)性、最值,恒成立.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),.
(Ⅰ)當時,求曲線在處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對任意的,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是二次函數(shù),不等式的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然數(shù)m,使得方程=0在區(qū)間(m,m+1)內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出所有m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的結(jié)論下,是否存在實常數(shù)和,使得和?若存在,求出和的值.若不存在,說明理由.
(Ⅲ)設(shè)有兩個零點,且成等差數(shù)列,試探究值的符號.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,.
(Ⅰ)若的最小值為,試判斷函數(shù)的零點個數(shù),并說明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f (1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com