設(shè)f(x)=x3-
1
2
x2-2x+5,求函數(shù)的單調(diào)區(qū)間.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0.
解答: 解:f'(x)=3x2-x-2(2分)
由f'(x)>0得x<-
2
3
或x>1,
故函數(shù)的單調(diào)遞增區(qū)間為(-∞,-
2
3
),(1,+∞);
由f'(x)<0得-
2
3
<x<1故函數(shù)的單調(diào)遞減區(qū)間為(-
2
3
,1).
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的步驟:(1)確定 的定義域;(2)求導(dǎo)數(shù)fˊ(x);(3)在函數(shù) 的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0(4)確定 的單調(diào)區(qū)間.若在函數(shù)式中含字母系數(shù),往往要分類(lèi)討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=|x|,x∈R},則A∩B中的元素個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(0.027) -
1
3
-(-
1
7
-2+(2
7
9
 
1
2
-(
2
-1
0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(m-1)x2+2mx+3是R上的偶函數(shù),則f(-1),f(-
2
),f(
3
)的大小關(guān)系為(  )
A、f(
3
)>f(-
2
)>f(-1)
B、f(
3
)<f(-
2
)<f(-1)
C、f(-
2
)<f(
3
)<f(-1)
D、f(-1)<f(
3
)<f(-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x-
1-x
x+|1-x|
的值域?yàn)椋ā 。?/div>
A、(-∞,1)
B、(-∞,1]
C、(0,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x與y之間的一組數(shù)據(jù)
x0123
y1357
(I) 請(qǐng)?jiān)诖痤}卡給定的坐標(biāo)系中畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)完成答題卡上的表格,并用最小二乘法求出y關(guān)于x的回歸方程
y
=
?
b
x+
?
a

參考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2mx與g(x)=
mx+3
x+1
在區(qū)間[1,2]上都是減函數(shù),則m的取值范圍是( 。
A、[2,3)
B、[2,3]
C、[2,+∞)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿(mǎn)足條件的最小正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)邊分別為a,b,c.求證:b2-c2=a(bcosC-ccosB)

查看答案和解析>>

同步練習(xí)冊(cè)答案