在等比數(shù)列中,若是互不相等的正整數(shù),則有等式成立.類比上述性質(zhì),相應(yīng)地,在等差數(shù)列中,若是互不相等的正整數(shù),則有等式________成立.
(r-s)bt+(s-t)br+(t-r)bs=0

試題分析:一般的,等比數(shù)列中的積類比等差數(shù)列中的和,等比數(shù)列中的商類比等差數(shù)列的差,等比數(shù)列中的冪,類比等差數(shù)列中的“積”,所以在等差數(shù)列中,若是互不相等的正整數(shù),則有等式(r-s)bt+(s-t)br+(t-r)bs=0成立。
點評:中檔題,解答此類問題的一般步驟:①找出等差數(shù)列、等比數(shù)列之間的相似性或者一致性.②用等比數(shù)列的性質(zhì)去推測等差數(shù)列的性質(zhì),得出一個明確的命題(或猜想)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列是等差數(shù)列,
(1)判斷數(shù)列是否是等差數(shù)列,并說明理由;
(2)如果,試寫出數(shù)列的通項公式;
(3)在(2)的條件下,若數(shù)列得前n項和為,問是否存在這樣的實數(shù),使當且僅當時取得最大值。若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

把正整數(shù)排列成如圖甲三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大順序排成一列,得到一個數(shù)列,若,則  ________.
1                                               1
2   3  4                                         2   4
5  6   7   8   9                                5   7   9 
10  11  12  13  14  15  16                       10  12   14  16
17  18  19  20  21  22  23  24  25              17  19   21   23   25 
26  27  28  29  30  31  32  33  34  35  36      26   28   30   32   34   36 
..                                              ..
圖甲                                          圖乙

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列{an}的前n項和為
(I)若a1=1,S10= 100,求{an}的通項公式;
(II)若 =n2-6n,解關(guān)于n的不等式+ an >2n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某市去年11份曾發(fā)生流感,據(jù)統(tǒng)計,11月1日該市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少30人,到11月30日止,該市在這30日內(nèi)感染該病毒的患者總共8670人,問11月幾日,該市感染此病毒的新患者人數(shù)最多?并求這一天的新患者人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2,a3, 并推測a n的表達式;
(2)用數(shù)學歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在8×8棋盤的64個方格中,共有由整數(shù)個小方格組成的大小或位置不同的正方形的個數(shù)為
A.64B.128C.204D.408

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列 的前項和為,若,,求:
(1)數(shù)列的通項公式;
(2).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知等差數(shù)列中,成等比數(shù)列,則      .

查看答案和解析>>

同步練習冊答案