【題目】下列說法錯誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得+x0+1<0”,則p:“x∈R,均有x2+x+1≥0”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是_____________.
①.如果命題“”與命題“或”都是真命題,那么命題一定是真命題.
②.命題,則
③.命題“若,則”的否命題是:“若,則”
④.特稱命題 “,使”是真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意的x,y∈(0,+∞),不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,則正實數(shù)a的最大值是( )
A.
B.
C.e
D.2e
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,P點的極坐標(biāo)為 ,在平面直角坐標(biāo)系中,直線l經(jīng)過點P,斜率為
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T,其范圍為[0,10],分為五個級別,T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r段(T≥3),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如右圖. (Ⅰ)這50個路段為中度擁堵的有多少個?
(Ⅱ)據(jù)此估計,早高峰三環(huán)以內(nèi)的三個路段至少有一個是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>
(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘;中度擁堵為42分鐘;嚴(yán)重?fù)矶聻?0分鐘,求此人所用時間的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中曲線 經(jīng)伸縮變換 后得到曲線C2 , 在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C3的極坐標(biāo)方程為 .
(1)求曲線C2的參數(shù)方程和C3的直角坐標(biāo)方程;
(2)設(shè)M為曲線C2上的一點,又M向曲線C3引切線,切點為N,求|MN|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)對(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合: ①M={(x,y)|y= };
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x﹣2};
④M={(x,y)|y=log2x}
其中是“垂直對點集”的序號是( )
A.②③④
B.①②④
C.①③④
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com