已知等差數(shù)列{an}中,a3=3,a7=7,其通項(xiàng)公式為an,前n項(xiàng)和為Sn
(1)求an與Sn
(2)若bn=2an,試求數(shù)列{bn}的前n項(xiàng)和Tn
(3)若kn=
1
Sn
,試求數(shù)列{kn}的前n項(xiàng)和Qn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出an與Sn
(2)由bn=2an=2n,利用等比數(shù)列前n項(xiàng)和公式能求出數(shù)列{bn}的前n項(xiàng)和Tn
(3)由kn=
1
Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
),利用裂項(xiàng)求和法能求出數(shù)列{kn}的前n項(xiàng)和Qn
解答: 解:(1)設(shè)等差數(shù)列的首項(xiàng)為a1,公差為d,
∵等差數(shù)列{an}中,a3=3,a7=7,
a1+2d=3
a1+6d=7
,
解得a1=1,d=1,…(4分)
∴an=1+(n-1)×1=n,…(5分)
Sn=n×1+
n(n-1)
2
×1
=
n(n+1)
2
.…(6分)
(2)由(1)可知bn=2an=2n,…(7分)
∵數(shù)列{bn}是首項(xiàng)為2,公比為2的等比數(shù)列…(8分)
∴Tn=
b1(1-qn)
1-q
=
2(1-2n)
1-2
=2n+1-2.…(10分)
(3)由(1)可知kn=
1
Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
),…(11分)
∴Qn=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=2(1-
1
n+1
)…(13分)
=
2n
n+1
.…(14分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是中檔題,解題時(shí)要注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),如下表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a2011+a2012+a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(0,1),直線l:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M為直線l1:y=-m(m>2)上的任意一點(diǎn),過點(diǎn)M作軌跡C的兩條切線MA,MB.切點(diǎn)分別為A,B,試探究直線l1上是否存在點(diǎn)M,使得△MAB為直角三角形?若存在,有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=min{
x
,|x-2|},其中min{a,b}=
a, a≤b
b, a>b.
,則f(x)的最小值為
 
;若直線y=m與函數(shù)y=f(x)的圖象有三個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是雙曲線x2-
y2
3
=1的右支上的動(dòng)點(diǎn),F(xiàn)為雙曲線的右焦點(diǎn),已知A(3,1),則|PA|+|PF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
a2
-
y2
b2
=1的右焦點(diǎn),點(diǎn)A,B分別在其兩條漸近線上,且滿足
BF
=2
FA
OA
AB
=0(O為坐標(biāo)原點(diǎn)),則該雙曲線的離心率為( 。
A、
2
3
3
B、2
C、
3
D、
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列條件中,能判斷兩個(gè)平面平行的是( 。
A、一個(gè)平面內(nèi)的一條直線平行于另一個(gè)平面
B、一個(gè)平面內(nèi)的兩條直線平行于另一個(gè)平面
C、一個(gè)平面內(nèi)有無數(shù)條直線平行于另一個(gè)平面
D、一個(gè)平面內(nèi)的任何一條直線都平行于另一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=
2n+1an
an+2n
(n∈N*)

(1)證明數(shù)列{
2n
an
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=n(n+1)an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x+
1
2
cos2x,若其圖象是由y=sin2x圖象向左平移φ(φ>0)個(gè)單位得到,則φ的最小值為( 。
A、
π
6
B、
6
C、
π
12
D、
12

查看答案和解析>>

同步練習(xí)冊(cè)答案