【題目】如圖,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F為棱BB1的中點,M為線段AC1的中點.
(1)求證:直線MF∥平面ABCD;
(2)求證:平面AFC1⊥平面ACC1A1.
【答案】(1)證明見解析;(2)證明見解析;
【解析】試題分析:(1)延長C1F交CB的延長線于點N,連接AN.,由三角形的中位線的性質(zhì)可得MF∥AN ,從而證明MF∥平面ABCD.
(2)由直四棱柱性質(zhì)得A1A⊥平面ABCD,從而A1A⊥BD,由菱形性質(zhì)推知AC⊥BD,所以BD⊥平面ACC1A1.又NA∥BD.易證得結(jié)論.
試題解析:
(1)延長C1F交CB的延長線于點N,連接AN.
∵F是BB1的中點,
∴F為C1N的中點,B為CN的中點.
又∵M是線段AC1的中點,
∴MF∥AN.
又∵MF平面ABCD,AN平面ABCD,
∴MF∥平面ABCD.
(2)連接BD,由直四棱柱ABCD-A1B1C1D1可知,A1A⊥平面ABCD,
又∵BD平面ABCD,
∴A1A⊥BD.
∵四邊形ABCD為菱形,
∴AC⊥BD.
又∵AC∩A1A=A,AC、A1A平面ACC1A1,
∴BD⊥平面ACC1A1.
在四邊形DANB中,DA∥BN,且DA=BN,
∴四邊形DANB為平行四邊形,
∴NA∥BD,
∴NA⊥平面ACC1A1.
又∵NA平面AFC1,
∴平面AFC1⊥平面ACC1A1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)若函數(shù)為偶函數(shù),求實數(shù)的值;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若方程有且僅有一個解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017屆高三第二次湖北八校文數(shù)試卷第16題)祖暅(公元前5~6世紀(jì))是我國齊梁時代的數(shù)學(xué)家,是祖沖之的兒子.他提出了一條原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.設(shè)由橢圓所圍成的平面圖形繞軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體
(如圖)(稱為橢球體),課本中介紹了應(yīng)用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴。某汽車經(jīng)銷商退出三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計分析,得到如下的柱狀圖。已知從三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1輛所獲得的利潤分別是1萬元,2萬元,3萬元,F(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購買此品牌汽車一輛。以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率。
(Ⅰ)求甲乙兩人采用不同分期付款方式的概率;
(Ⅱ)記(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,求的分布列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點.
(1)若,求證:無論點P在DD1上如何移動,總有BP⊥MN;
(2)棱DD1上是否存在這樣的點P,使得平面APC1⊥平面ACC1?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于和, , , 是棱的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求平面與平面所成的二面角的余弦值;
(Ⅲ)設(shè)點是直線上的動點, 與平面所成的角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(1)求的解析式;
(2)證明:函數(shù)在定義域上是增函數(shù);
(3)設(shè)是否存在正實數(shù)使得函數(shù)在內(nèi)的最小值為?若存在,求出的值;若存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某項考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補(bǔ)考機(jī)會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為.假設(shè)各次考試成績合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得證書的概率;
(2)在這項考試過程中,假設(shè)他不放棄所有的考試機(jī)會,記他參加考試的次數(shù)為,求的分布列及數(shù)學(xué)期望E.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com