(本小題滿分12分)某項計算機考試按科目A、科目B依次進行,只有大拿感科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只允許有一次補考機會,兩個科目均合格方快獲得證書,現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為,假設各次考試合格與否均互不影響.
(Ⅰ)求他不需要補考就可獲得證書的概率;
(Ⅱ)在這次考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數(shù)為,求隨即變量的分布列和數(shù)學期望.

(Ⅰ)設該人不需要補考就可獲得證書為事件C,則C=,
.
(Ⅱ)隨即變量的分布列為


2
3
4
P



.

解析試題分析:設該人參加科目A考試合格和補考為時間,參加科目B考試合格和補考合格為時間相互獨立.
(Ⅰ)設該人不需要補考就可獲得證書為事件C,則C=
.    …………………4分
(Ⅱ)的可能取值為2,3,4. 則
P(
P;
P .    …………………9分
所以,隨即變量的分布列為


2
3
4
P



所以.                 ………………12分
考點:本題主要考查離散性隨機變量的分布列及數(shù)學期望。
點評:常見題,涉及相互獨立事件概率的計算,要細心。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2011年4月28日世界園藝博覽會將在陜西西安浐灞生態(tài)區(qū)舉行,為了接待來自國內(nèi)外的各界人士,需招募一批志愿者,要求志愿者不僅要有一定的氣質,還需有豐富的人文、地理、歷史等文化知識。志愿者的選拔分面試和知識問答兩場,先是面試,面試通過后每人積60分,然后進入知識問答。知識問答有A,B,C,D四個題目,答題者必須按A,B,C,D順序依次進行,答對A,B,C,D四題分別得20分、20分、40分、60分,每答錯一道題扣20分,總得分在面試60分的基礎上加或減。答題時每人總分達到100分或100分以上,直接錄用不再繼續(xù)答題;當四道題答完總分不足100分時不予錄用。
假設志愿者甲面試已通過且第二輪對A,B,C,D四個題回答正確的概率依次是,且各題回答正確與否相互之間沒有影響.
(Ⅰ) 用X表示志愿者甲在知識問答結束時答題的個數(shù),求X的分布列和數(shù)學期望;
(Ⅱ)求志愿者甲能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù) )
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程恰有兩個不相等實根的概率;
(2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),求方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某產(chǎn)品按行業(yè)生產(chǎn)標準分成個等級,等級系數(shù)依次為,其中為標準,為標準,產(chǎn)品的等級系數(shù)越大表明產(chǎn)品的質量越好,已知某廠執(zhí)行標準生產(chǎn)該產(chǎn)品,且該廠的產(chǎn)品都符合相應的執(zhí)行標準.
(Ⅰ)從該廠生產(chǎn)的產(chǎn)品中隨機抽取件,相應的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
該行業(yè)規(guī)定產(chǎn)品的等級系數(shù)的為一等品,等級系數(shù)的為二等品,等級系數(shù)的為三等品,
(1)試分別估計該廠生產(chǎn)的產(chǎn)品的一等品率、二等品率和三等品率;
(2)已知該廠生產(chǎn)一件該產(chǎn)品的利潤y(單位:元)與產(chǎn)品的等級系數(shù)的關系式為:
,從該廠生產(chǎn)的產(chǎn)品中任取一件,其利潤記為,用這個樣本的頻率分布估計總體分布,將頻率視為概率,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為,
(1)從袋中隨機取出兩個球,求取出的球的編號之和不大于的概率;
(2)先從袋中隨機取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知集合在平面直角坐標系中,點的橫、縱坐標滿足。
(1)請列出點的所有坐標;
(2)求點不在軸上的概率;
(3)求點正好落在區(qū)域上的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)一個口袋內(nèi)裝有大小相同的6個小球,其中2個紅球,記為A1、A2,4個黑球,記為B1、B2、B3、B4,從中一次摸出2個球.
(Ⅰ)寫出所有的基本事件;
(Ⅱ)求摸出的兩個球顏色不同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)把一個正方體的表面涂上紅色,在它的長、寬、高上等距離地各切三刀,則大正方體被分割成64個大小相等的小正方體,將這些小正方體均勻地攪混在一起,如果從中任取1個,求下列事件的概率
(1)事件A=“這個小正方體各個面都沒有涂紅色”
(2)事件B=“這個小正方體只有1個面涂紅色”
(3)事件C=“這個小正方體至少2個面涂紅色”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題9分)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為,(Ⅰ)求n;(Ⅱ)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案