在橢圓上與點(diǎn)(3,0)的距離為整數(shù)的點(diǎn)的個(gè)數(shù)為

A.7                B.8           C.10          D.12

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在橢圓C中,點(diǎn)F1是左焦點(diǎn),A(a,0),B(0,b)分別為右頂點(diǎn)和上頂點(diǎn),點(diǎn)O為橢圓的中心.又點(diǎn)P在橢圓上,且滿足條件:OP∥AB,點(diǎn)H是點(diǎn)P在x軸上的射影.
(1)求證:當(dāng)a取定值時(shí),點(diǎn)H必為定點(diǎn);
(2)如果點(diǎn)H落在左頂點(diǎn)與左焦點(diǎn)之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于3+
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紹興模擬)已知F1,F(xiàn)2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P在橢圓上,且F1PF2=
π
2
,記線段PF1與Y軸的交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若△F1OQ與四邊形OF2PQ的面積之比為1:2,則該橢圓的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
3
,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓+y2=1的兩個(gè)焦點(diǎn)是F1(-c,0)與F2(c,0)(c>0),且橢圓上存在點(diǎn)M,使得·=0.

(1)求實(shí)數(shù)m的取值范圍;

(2)在直線l:y=x+2上存在一點(diǎn)E,使得?|EF1|+|EF2|取得最小值,求此最小值及此時(shí)橢圓的方程;

(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線l與橢圓交于不同的兩點(diǎn)A、B,滿足=,且使得過點(diǎn)N(0,-1)、Q的直線,有·=0?若存在,求出k的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案