(1)求實(shí)數(shù)m的取值范圍;
(2)在直線l:y=x+2上存在一點(diǎn)E,使得?|EF1|+|EF2|取得最小值,求此最小值及此時(shí)橢圓的方程;
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線l與橢圓交于不同的兩點(diǎn)A、B,滿足=,且使得過點(diǎn)N(0,-1)、Q的直線,有·=0?若存在,求出k的取值范圍,若不存在,說明理由.
解析:(1)∵|MF1|+|MF2|=2,|MF1|2+|MF2|2=4m,
而|MF1|2+|MF2|2≥,
∴4m≥2(m+1),解得m≥1.
(2)由
得(m+2)x2+4(m+1)x+3(m+1)=0.
Δ=16(m+1)2-12(m+2)(m+1)=4(m+1)(m-2)≥0.
解得m≥2或m≤-1(舍去),∴m≥2.
此時(shí)|EF1|+|EF2|=2m+1≥2,
當(dāng)且僅當(dāng)m=2時(shí)|EF1|+|EF2|取得最小值2,此時(shí)橢圓方程為+y2=1.
(3)設(shè)兩點(diǎn)AB的坐標(biāo)分別為A(x1,y1)、B(x2,y2),中點(diǎn)Q(x,y),
則+(y1+y2)(y1-y2)=0,
∴AB中點(diǎn)Q的軌跡為直線
y=-x ①
在橢圓內(nèi)的部分.
又由·=0,得過點(diǎn)N(0,-1),且斜率為-的直線方程為y=-x-1, ②
由①②可得點(diǎn)Q的坐標(biāo)為(,),
∵點(diǎn)Q必在橢圓內(nèi),
∴<1.解得k2<1,
又k≠0,∴k∈(-1,0)∪(0,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A.0 B.1 C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1、F2為橢圓+y2=1的兩焦點(diǎn),P在橢圓上,當(dāng)△F1PF2面積為1時(shí),的值為( )
A、0 B、1 C、2 D、3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)L是相應(yīng)于焦點(diǎn)F2的準(zhǔn)線,直線PF2與L相交于點(diǎn)Q.若=
2-.求直線PF2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)L是相應(yīng)于焦點(diǎn)F2的準(zhǔn)線,直線PF2與L相交于點(diǎn)Q.若=2-.求直線PF2的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com