【題目】隨著科技的發(fā)展,近年看電子書(shū)的國(guó)人越來(lái)越多;所以近期有許多人呼呼“回歸紙質(zhì)書(shū)”,目前出版物閱讀中紙質(zhì)書(shū)占比出現(xiàn)上升現(xiàn)隨機(jī)選出200人進(jìn)行采訪,經(jīng)統(tǒng)計(jì)這200人中看紙質(zhì)書(shū)的人數(shù)占總?cè)藬?shù).將這200人按年齡分成五組:第l組,第2組,第3組,第4組,第5組,其中統(tǒng)計(jì)看紙質(zhì)書(shū)的人得到的頻率分布直方圖如圖所示.

(1)求的值及看紙質(zhì)書(shū)的人的平均年齡;

(2)按年齡劃分,把年齡在的稱(chēng)青壯年組,年齡在的稱(chēng)為中老年組,若選出的200人中看電子書(shū)的中老年人有10人,請(qǐng)完成下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為看書(shū)方式與年齡層有關(guān)?

看電子書(shū)

看紙質(zhì)書(shū)

合計(jì)

青壯年

中老年

合計(jì)

附:(其中).

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1),;(2)列聯(lián)表見(jiàn)解析,能.

【解析】

1)由頻率分布直方圖均值公式計(jì)算求解即可;(2)計(jì)算各段的人數(shù)完成列聯(lián)表,利用公式求解的值求解,對(duì)照臨界值表判斷下結(jié)論即可

1)由圖可得:,得

所以看紙質(zhì)書(shū)的人的平均年齡為:

.

2)由題意得看紙質(zhì)書(shū)和電子書(shū)的人數(shù)分別為:,.

所以看紙質(zhì)書(shū)的160人中,青壯年組、中老年組的人數(shù)分別為:

.

所以列聯(lián)表為:

計(jì)算得的觀測(cè)值為

所以我們能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為看書(shū)方式與年齡層有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.

(1)求的方程;

(2)試問(wèn):在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,左焦點(diǎn)為,離心率,過(guò)點(diǎn)的直線與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn),若

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)圓上任意一點(diǎn)作圓的切線與橢圓交于,兩點(diǎn),以為直徑的圓是否過(guò)定點(diǎn),如過(guò)定點(diǎn),求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0),其右焦點(diǎn)為F1,0),離心率為

)求橢圓C的方程;

)過(guò)點(diǎn)F作傾斜角為α的直線l,與橢圓C交于P,Q兩點(diǎn).

)當(dāng)時(shí),求△OPQO為坐標(biāo)原點(diǎn))的面積;

)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓柱,底面半徑為1,高為2,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其路徑最短時(shí)在側(cè)面留下的曲線記為:將軸截面繞著軸,逆時(shí)針旋轉(zhuǎn) 角到位置,邊與曲線相交于點(diǎn).

(1)當(dāng)時(shí),求證:直線平面;

(2)當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:

(1)橢圓的焦點(diǎn)在軸上,焦距為4,且經(jīng)過(guò)點(diǎn);

(2)雙曲線的焦點(diǎn)在軸上,右焦點(diǎn)為,過(guò)作重直于軸的直線交雙曲線于兩點(diǎn),且,離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右頂點(diǎn)分別為、,過(guò)左焦點(diǎn)的直線交橢圓、兩點(diǎn)(異于兩點(diǎn)),當(dāng)直線垂直于軸時(shí),四邊形的面積為6

(1)求橢圓的方程;

(2)設(shè)直線、的交點(diǎn)為;試問(wèn)的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD平面CDEF,BAD=CDA=90,,M是線段AE上的動(dòng)點(diǎn).

(1)試確定點(diǎn)M的位置,使AC平面DMF,并說(shuō)明理由;

(2)(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩年度未發(fā)生有責(zé)任道路交通事故

下浮

上三年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮

上一個(gè)年度發(fā)生有責(zé)任交通死亡事故

上浮

某機(jī)構(gòu)為了解某一品牌普通座以下私家車(chē)的投保情況,隨機(jī)抽取了輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

數(shù)量

以這輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:

(1)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損元,一輛非事故車(chē)盈利元:

①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)輛(車(chē)齡已滿三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.

查看答案和解析>>

同步練習(xí)冊(cè)答案