將一個半徑為R的藍球放在地面上,被陽光斜照留下的影子是橢圓.若陽光與地面成60°角,則橢圓的離心率為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先要弄懂橢圓產(chǎn)生的原理,根據(jù)原理來解決三角形的邊角關系,利用離心率公式求的結(jié)果.
解答: 解:如圖
由于太陽光線是平行光線,得到的圖形為:AB代表橢圓長軸的長,橢圓的短軸不變化,AC為球的直徑2R
則:利用直角三角形的邊角關系求得:AB=
4R
3
,即a=
2R
3
,b=R
利用橢圓中a2=b2+c2解得c=
R
3

則:e=
c
a
=
R
3
2R
3
=
1
2

故答案為:
1
2
點評:本題考查的知識點:橢圓產(chǎn)生的原理,a、b、c的關系式,求橢圓的離心率.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F1、F2分別為
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點,P為雙曲線左支上的任意一點,若
|PF2|2
|PF1|
的最小值為9a,則這個雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b為兩異面直線,OA∥a,OB∥b,若∠AOB=150°,則a,b所成的角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)經(jīng)過點(
3
2
,1)
,一個焦點是F(0,1).
(1)求橢圓C的方程;
(2)若傾斜角為
π
4
的直線l與橢圓C交于A、B兩點,且|AB|=
12
2
7
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x-1)=x2-2x,求f(x),f(3)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,求證:
a-ccosB
b-ccosA
=
sinB
sinA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+b(x≠0),其中a,b∈R.
(1)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若對于任意的a∈[
1
2
,2],不等式{an}在n上恒成立,求Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有兩個不同的實根,則實數(shù)a的值為( 。
A、a=5或a=8-4ln2
B、a=5或a=8+4ln2
C、a=-5或a=8-4ln2
D、a=5或a=8-4ln3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的函數(shù),則下列敘述正確的是( 。
A、f(x)f(-x)是奇函數(shù)
B、
f(x)
f(-x)
是奇函數(shù)
C、f(x)-f(-x)是偶函數(shù)
D、f(x)+f(-x)是偶函數(shù)

查看答案和解析>>

同步練習冊答案