【題目】如圖,在三棱錐中,
為等腰直角三角形,
為等邊三角形,其中O為BC中點,且
.
(1)求證:平面平面PBC;
(2)若且
平面EBC,其中E為AP上的點,求CE與平面ABC所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由題意可得,
,利用線面垂直的判定定理證出
平面PAO,從而得證.
(2)作PH垂直于平面ABC,垂足為H,由(1)知,點H在直線AO上,以A為原點,AC為x軸,AB為y軸,以過A點與平面ABC垂直的直線為z軸建立空間直角坐標(biāo)系,求出以及平面ABC的一個法向量,利用空間向量的數(shù)量積即可求解.
(1) 證明:由題可知,,
,且
,
故平面PAO,又
平面PBC,因此平面
平面PBC.
(2)作PH垂直于平面ABC,垂足為H,由(1)知,點H在直線AO上.
如圖,以A為原點,AC為x軸,AB為y軸,以過A點與平面ABC垂直的直線為z軸建立空間直角坐標(biāo)系,可得如下坐標(biāo):,
,
,
,
設(shè)P點坐標(biāo)為,利用
,
,可得
.從
.
因為E為AP上的點,故存在實數(shù),使得
,點E坐標(biāo)可設(shè)為
,
由平面EBC知,
,得
,
從而,取平面ABC的一個法向量
.
設(shè)CE與平面ABC所成角的為,
.
故CE與平面ABC所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
是邊長為2的正方形,
,
為
的中點,點
在
上,
平面
,
在
的延長線上,且
.
(1)證明:平面
.
(2)過點作
的平行線,與直線
相交于點
,點
為
的中點,求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的每個頂點都在球
的球面上,
是面積為
的等邊三角形,
,
,且平面
平面
.
(1)確定的位置(需要說明理由),并證明:平面
平面
.
(2)與側(cè)面平行的平面
與棱
,
,
分別交于
,
,
,求四面體
的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟負擔(dān),讓更多的孩子接受良好的教育,國家施行高中生國家助學(xué)金政策,普通高中國家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號召,通過各種形式宣傳國家助學(xué)金政策.為了解某高中學(xué)校對國家助學(xué)金政策的宣傳情況,擬采用隨機抽樣的方法抽取部分學(xué)生進行采訪調(diào)查.
(1)若該高中學(xué)校有2000名在校學(xué)生,編號分別為0001,0002,0003,…,2000,請用系統(tǒng)抽樣的方法,設(shè)計一個從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫出必要的步驟)
(2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級共評定出3個1檔,2個2檔,1個3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫感想,求這2名同學(xué)不在同一檔的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
為正實數(shù).
(1)若不等式恒成立,求實數(shù)
的取值范圍;
(2)當(dāng)時,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺舉行文藝比賽,并通過網(wǎng)絡(luò)對比賽進行直播.比賽現(xiàn)場有5名專家評委給每位參賽選手評分,場外觀眾可以通過網(wǎng)絡(luò)給每位參賽選手評分.每位選手的最終得分由專家評分和觀眾評分確定.某選手參與比賽后,現(xiàn)場專家評分情況如表;場外有數(shù)萬名觀眾參與評分,將評分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:
專家 | A | B | C | D | E |
評分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |
(1)求a的值,并用頻率估計概率,估計某場外觀眾評分不小于9的概率;
(2)從5名專家中隨機選取3人,X表示評分不小于9分的人數(shù);從場外觀眾中隨機選取3人,用頻率估計概率,Y表示評分不小于9分的人數(shù);試求E(X)與E(Y)的值;
(3)考慮以下兩種方案來確定該選手的最終得分:方案一:用所有專家與觀眾的評分的平均數(shù)作為該選手的最終得分,方案二:分別計算專家評分的平均數(shù)
和觀眾評分的平均數(shù)
,用
作為該選手最終得分.請直接寫出
與
的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱底面半徑為1,高為
,
是圓柱的一個軸截面,動點
從點
出發(fā)沿著圓柱的側(cè)面到達點
,其距離最短時在側(cè)面留下的曲線
如圖所示.將軸截面
繞著軸
逆時針旋轉(zhuǎn)
后,邊
與曲線
相交于點
.
(1)求曲線的長度;
(2)當(dāng)時,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且直線
與曲線
交于
、
兩點.
(1)求實數(shù)的取值范圍;
(2)若,點
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com