集合A={x||x|<2}的一個非空真子集是   
【答案】分析:解絕對值不等式|x|<2,可以求出集合A,由于集合A是一個無限集,故它有無限多個非空真子集,寫出滿足條件的一個即可得到答案.
解答:解:∵A={x||x|<2}=(-2,2)
若[a,b]?A

不妨令a=0,b=1
則集合[0,1]滿足要求
故答案為:[0,1].
點評:本題考查的知識點是絕對值不等式的解法,子集與真子集的定義,其中解絕對值不等式,求出集合A是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>1},B={x|x2-2x<0},則A∪B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)1、已知全集∪=R,集合A={x|x2≤4},B={x|x<1},則集合A∪?UB等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步練習(xí)冊答案