設(shè)函數(shù),其中為正整數(shù).
(1)判斷函數(shù)的單調(diào)性,并就的情形證明你的結(jié)論;
(2)證明:;
(3)對于任意給定的正整數(shù),求函數(shù)的最大值和最小值.
(1)在上均為單調(diào)遞增的函數(shù). …… 2分
對于函數(shù),設(shè) ,則
,
,
函數(shù)在上單調(diào)遞增. …… 4分
(2) 原式左邊
. …… 6分
又原式右邊.
. …… 8分
(3)當(dāng)時,函數(shù)在上單調(diào)遞增,
的最大值為,最小值為.
當(dāng)時,, 函數(shù)的最大、最小值均為1.
當(dāng)時,函數(shù)在上為單調(diào)遞增.
的最大值為,最小值為.
當(dāng)時,函數(shù)在上單調(diào)遞減,
的最大值為,最小值為. …… 11分
下面討論正整數(shù)的情形:
當(dāng)為奇數(shù)時,對任意且
,
以及 ,
,從而 .
在上為單調(diào)遞增,則
的最大值為,最小值為. …… 14分
當(dāng)為偶數(shù)時,一方面有 .
另一方面,由于對任意正整數(shù),有
,
.
函數(shù)的最大值為,最小值為.
綜上所述,當(dāng)為奇數(shù)時,函數(shù)的最大值為,最小值為.
當(dāng)為偶數(shù)時,函數(shù)的最大值為,最小值為. …… 18分
同答案
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)設(shè)函數(shù),其中為正整數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性,并就的情形證明你的結(jié)論;
(Ⅱ)證明:;
(Ⅲ)對于任意給定的正整數(shù),求函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省淄博市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項積為,
即,求;
(3)在(2)的條件下,記,求數(shù)列的前項和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第四次(4月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),其中為常數(shù).
(Ⅰ)當(dāng)時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)當(dāng)時,求的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數(shù),不等式都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)判斷函數(shù)的單調(diào)性,并就的情形證明你的結(jié)論;
(2)證明:;
(3)對于任意給定的正整數(shù),求函數(shù)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com