(本小題滿分13分)設(shè)函數(shù),其中為正整數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性,并就的情形證明你的結(jié)論;
(Ⅱ)證明:;
(Ⅲ)對于任意給定的正整數(shù),求函數(shù)的最大值和最小值.
(Ⅰ) 函數(shù)在上單調(diào)遞增 (Ⅱ)略 (Ⅲ)的最大值為,最小值為.
:(1)在上均為單調(diào)遞增的函數(shù). 1分
對于函數(shù),設(shè) ,則
,
,
函數(shù)在上單調(diào)遞增. 3分
(2) 原式左邊
.… 5分
又原式右邊.
. 6分
(3)當時,函數(shù)在上單調(diào)遞增,
的最大值為,最小值為.
當時,, 函數(shù)的最大、最小值均為1.
當時,函數(shù)在上為單調(diào)遞增.
的最大值為,最小值為.
當時,函數(shù)在上單調(diào)遞減,
的最大值為,最小值為. … 9分
下面討論正整數(shù)的情形:
當為奇數(shù)時,對任意且
,
以及 ,
,從而 .
在上為單調(diào)遞增,則
的最大值為,最小值為. …… 11分
當為偶數(shù)時,一方面有 .
另一方面,由于對任意正整數(shù),有
,
.
函數(shù)的最大值為,最小值為.
綜上所述,當為奇數(shù)時,函數(shù)的最大值為,最小值為.
當為偶數(shù)時,函數(shù)的最大值為,最小值為. …… 13分
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com