【題目】已知奇函數(shù)與偶函數(shù)均為定義在上的函數(shù),并滿足
(1)求的解析式;
(2)設函數(shù)
①判斷的單調性,并用定義證明;
②若,求實數(shù)的取值范圍
【答案】(1) (2) 為上的單增函數(shù);證明見解析;① ②
【解析】
(1)利用解方程法,把看成兩個未知數(shù),構造兩個方程,從而求得的表達式;
(2)①易得為上的單增函數(shù),再利用定義單調性的三個步驟,即一取、二比、三下的完整步驟進行證明;
②利用換元法,令將不等式轉化為,再利用單調性得到,最后求得實數(shù)的取值范圍.
(1)因為奇函數(shù)與偶函數(shù)均為定義在上的函數(shù),
所以,
因為,①
所以,
即②
①-②得:,所以;
(2)①為上的單增函數(shù),以下給出證明:
因為,設,則:
因為,所以,,,
所以為上的單增函數(shù);
②設,則,即
即,即,
因為,所以為奇函數(shù),
由,得,又為上的增函數(shù),
所以等價于,即,
所以,解得,即的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】下面四個命題,
(1)函數(shù)在第一象限是增函數(shù);
(2)在中,“”是“”的充分非必要條件;
(3)函數(shù)圖像關于點對稱的充要條件是;
(4)若,則.
其中真命題的是_________.(填所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分兩層)從該工廠的工人中共抽查100名工人,調查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2:
表1:
生產(chǎn)能力分組 | |||||
人數(shù) | 4 | 8 | x | 5 | 3 |
表2:
生產(chǎn)能力分組 | ||||
人數(shù) | 6 | y | 36 | 18 |
(1)求x,y的值;
(2)在答題紙上完成頻率分布直方圖;并根據(jù)頻率分布直方圖,估計該工廠B類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù).(結果均保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點到達點的位置,且.
(1)證明:平面平面;
(2)為線段上一點,為線段上一點,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長應在什么范圍內?
(2)當DN的長度為多少時,矩形花壇AMPN的面積最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型商場去年國慶期間累計生成萬張購物單,從中隨機抽出張,對每單消費金額進行統(tǒng)計得到下表:
消費金額(單位:元) | |||||
購物單張數(shù) | 25 | 25 | 30 | 10 | 10 |
由于工作人員失誤,后兩欄數(shù)據(jù)已無法辨識,但當時記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計出的每單消費額的中位數(shù)與平均數(shù)恰好相等.用頻率估計概率,完成下列問題:
(1)估計去年國慶期間該商場累計生成的購物單中,單筆消費額超過元的概率;
(2)為鼓勵顧客消費,該商場打算在今年國慶期間進行促銷活動,凡單筆消費超過元者,可抽獎一次,中一等獎、二等獎、三等獎的顧客可以分別獲得價值元、元、元的獎品.已知中獎率為,且一等獎、二等獎、三等獎的中獎率依次構成等比數(shù)列,其中一等獎的中獎率為.若今年國慶期間該商場的購物單數(shù)量比去年同期增長,式預測商場今年國慶期間采辦獎品的開銷.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,M、N分別是A1B1、B1C1的中點,問:
(1)AM和CN是否是異面直線?說明理由;
(2)D1B和CC1是否是異面直線?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱臺中,上底面邊長為4,下底面邊長為8,高為5,點分別在上,且.過點的平面與此四棱臺的下底面會相交,則平面與四棱臺的面的交線所圍成圖形的面積的最大值為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com