【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過(guò)點(diǎn)C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面積大于9平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(2)當(dāng)DN的長(zhǎng)度為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.

【答案】1)(0, 2,+∞);(2)矩形花壇的面積最小為8平方米.

【解析】試題分析:(1)由,列出函數(shù)關(guān)系式,通分化成標(biāo)準(zhǔn)形式,再求分式不等式的解集;(2)化簡(jiǎn)矩形的面積,利用基本不等式,即可求解.

試題解析:(1)設(shè)DN的長(zhǎng)為xx0)米,則|AN|=x+1)米,

,|AM|=S矩形AMPN=|AN||AM|=

S矩形AMPN99,又x02x2-5x+20,解得0xx2

DN的長(zhǎng)的取值范圍是(0, 2,+∞).(單位:米)

2)因?yàn)?/span>x0,所以矩形花壇的面積為:

y==2x++4≥4+4=8,當(dāng)且僅當(dāng)2x=,即x=1時(shí),等號(hào)成立.

答:矩形花壇的面積最小為8平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC是邊長(zhǎng)為1的正三角形,點(diǎn)P1 , P2 , P3四等分線段BC(如圖所示).

(1)求 + 的值;
(2)Q為線段AP1上一點(diǎn),若 =m + ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=3x2+2(k﹣1)x+k+5.
(1)求函數(shù)f(x)在[0,3]上最大值;
(2)若函數(shù)f(x)在[0,3]上有零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(Ⅰ)求的單調(diào)區(qū)間;

當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)AB、C三種家電,經(jīng)市場(chǎng)調(diào)查決定調(diào)整生產(chǎn)方案,計(jì)劃本季度(按不超過(guò)480個(gè)工時(shí)計(jì)算)生產(chǎn)AB、C三種家電共120臺(tái),其中A家電至少生產(chǎn)20臺(tái),已知生產(chǎn)AB、C三種家電每臺(tái)所需的工時(shí)分別為3、4、6個(gè)工時(shí),每臺(tái)的產(chǎn)值分別為20、3040千元,則按此方案生產(chǎn),此季度最高產(chǎn)值為(  )千元.

A. 3600 B. 350 C. 4800 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)如果對(duì)任意, 恒成立,求的取值范圍;

(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;

(3)若函數(shù)的兩個(gè)零點(diǎn)為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實(shí)數(shù);
(2)虛數(shù);
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1,求函數(shù)的極值;

2當(dāng) 時(shí),判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=﹣ 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[0,+∞)時(shí),不等式f(x)﹣x≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案