【題目】已知箱中裝有10個(gè)不同的小球,其中2個(gè)紅球、3個(gè)黑球和5個(gè)白球,現(xiàn)從該箱中有放回地依次取出3個(gè)小球.則3個(gè)小球顏色互不相同的概率是_____;若變量ξ為取出3個(gè)球中紅球的個(gè)數(shù),則ξ的數(shù)學(xué)期望Eξ)為_____

【答案】

【解析】

基本事件總數(shù)n10310003個(gè)小球顏色互不相同包含的基本事件個(gè)數(shù)m103﹣(23+33+53)=180,由此能求出3個(gè)小顏色互不相同的概率;若變量ξ為取出3個(gè)球中紅球的個(gè)數(shù),則ξ~(n,),由此能求出ξ的數(shù)學(xué)期望Eξ).

箱中裝有10個(gè)不同的小球,其中2個(gè)紅球、3個(gè)黑球和5個(gè)白球,

現(xiàn)從該箱中有放回地依次取出3個(gè)小球,

基本事件總數(shù)n1031000,

3個(gè)小球顏色互不相同包含的基本事件個(gè)數(shù):

m103﹣(23+33+53)=180,

3個(gè)小球顏色互不相同的概率是P;

若變量ξ為取出3個(gè)球中紅球的個(gè)數(shù),則ξ~(n,),

ξ的數(shù)學(xué)期望Eξ)=3

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從左到右依次寫(xiě)出110000的全部正整數(shù),然后去掉那些能被57整除的數(shù),將剩下的數(shù)連成一排組成一個(gè)新數(shù)。試求:

(1)新數(shù)的位數(shù);

(2)新數(shù)被11除的余數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾,調(diào)查結(jié)果如下面的2×2列聯(lián)表.

非體育迷

體育迷

總計(jì)

30

15

45

45

10

55

總計(jì)

75

25

100

1)據(jù)此資料判斷是否有90%的把握認(rèn)為體育迷與性別有關(guān).

2)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為超級(jí)體育迷,已知超級(jí)體育迷共有5人,其中女性2名,男性3名,若從超級(jí)體育迷中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)若函數(shù)存在極值,求這些極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,平面,且

1)求證:平面;

2)求鈍二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20203月,各行各業(yè)開(kāi)始復(fù)工復(fù)產(chǎn),生活逐步恢復(fù)常態(tài),某物流公司承擔(dān)從甲地到乙地的蔬菜運(yùn)輸業(yè)務(wù).已知該公司統(tǒng)計(jì)了往年同期200天內(nèi)每天配送的蔬菜量X40X200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計(jì)得到表格如表:

蔬菜量X

[40,80

[80120

[120,160

[160,200

天數(shù)

25

50

100

25

若將頻率視為概率,試解答如下問(wèn)題:

1)該物流公司負(fù)責(zé)人決定隨機(jī)抽出3天的數(shù)據(jù)來(lái)分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;

2)該物流公司擬一次性租賃一批貨車(chē)專(zhuān)門(mén)運(yùn)營(yíng)從甲地到乙地的蔬菜運(yùn)輸.已知一輛貨車(chē)每天只能運(yùn)營(yíng)一趟,每輛貨車(chē)每趟最多可裝載40件,滿載才發(fā)車(chē),否則不發(fā)車(chē).若發(fā)車(chē),則每輛貨車(chē)每趟可獲利2000元;若未發(fā)車(chē),則每輛貨車(chē)每天平均虧損400元.為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)一次性租賃幾輛貨車(chē)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是平面上由個(gè)點(diǎn)組成的點(diǎn)集.若在中任取四個(gè)點(diǎn),均至少有一個(gè)點(diǎn)與其余三個(gè)點(diǎn)相連,則下面結(jié)論中正確的是______.

中不存在與其他所有點(diǎn)相連的點(diǎn);

中至少有一個(gè)點(diǎn)與其余所有的點(diǎn)均相連;

中至多有兩個(gè)點(diǎn)與其余的點(diǎn)不相連;

中至多有兩個(gè)點(diǎn)與其余所有的點(diǎn)均相連.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱,側(cè)面為菱形,.

(1)求證:平面;

(2)若,,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案