【題目】將2006表示成5個正整數(shù)之和. 記. 問:
(1)當(dāng)取何值時,S取到最大值;
(2)進(jìn)一步地,對任意有,當(dāng)取何值時,S取到最小值. 說明理由.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)條件,判斷S的值是有界集,故必存在最大值與最小值,且S取到最大值,則必有,從而可求結(jié)論;
(2)當(dāng),且時,只有三種情況,后兩種情形是由第一組作調(diào)整下得到的,結(jié)合(1)中的分析,可得結(jié)論.
(1) 首先這樣的S的值是有界集,故必存在最大值與最小值。 若, 且使 取到最大值,則必有
(*)
事實(shí)上,假設(shè)(*)不成立,不妨假設(shè)。則令,,(),有,。
將S改寫成
同時有 。
于是有.這與S在時取到最大值矛盾.所以必有 . 因此當(dāng)取到最大值.
(2)當(dāng)且時,只有
402, 402, 402, 400, 400;
402, 402, 401, 401, 400;
402, 401, 401, 401, 401; 三種情形滿足要求。而后面兩種情形是在第一組情形下作,調(diào)整下得到的。根據(jù)上一小題的證明可以知道,每調(diào)整一次,和式 變大. 所以在情形取到最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù), 為自然對數(shù)的底數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在三個極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S—ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,
過A作AE垂直SB交SB于E點(diǎn),作AH垂直SD交SD于H點(diǎn),平面AEH交SC于K點(diǎn),且AB=1,SA=2.
(1)證明E、H在以AK為直徑的圓上,且當(dāng)點(diǎn)P是SA上任一點(diǎn)時,試求的最小值;
(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為( )
A.4
B.6
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線過點(diǎn),傾斜角為. 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).
(1)求直線的參數(shù)方程(設(shè)參數(shù)為)和曲線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若關(guān)于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個不同的實(shí)數(shù)根,則b+c的取值范圍為( )
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,點(diǎn)C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點(diǎn)E.若EB=6,EC=6 ,則BC的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com