已知函數(shù)f(x)=x2-4x-6,x∈[0,m]的值域為[-10,-6],求實數(shù)m的取值范圍.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先對函數(shù)f(x)配方,結(jié)合函數(shù)的值域,得出函數(shù)的單調(diào)區(qū)間,從而求出m的范圍.
解答: 解:∵f(x)=x2-4x-6=(x-2)2-10,
而x∈[0,m]的值域為[-10,-6],
∴m≥2,
∴f(x)在[0,2)遞減,在(2,m]遞增,
根據(jù)函數(shù)的對稱性,得出m≤4,
∴實數(shù)m的取值范圍是[2,4].
點評:本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1與圓x2+y2=(
b
2
+
a2-b2
2相交,則橢圓的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=xexx≤1)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2]時,f(x)=
x2-x,      x∈[0,1)
1
10
(x-2),x∈[1,2].
若x∈[4,6]時,f(x)≥t2-2t-4恒成立,則實數(shù)t的取值范圍是(  )
A、[-
6
5
,3]
B、[1-
5
,1+
5
]
C、[-1,3]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
lnx
x
=x2-2ex+e2+
1
2e
(e為自然對數(shù)的底)的根的個數(shù)是( 。
A、1B、0C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=
4
x
在點P(1,4)處的切線與直線l平行且距離為
17
,則直線l的方程為( 。
A、4x-y+9=0或4x-y+25=0
B、4x-y+9=0
C、4x+y+9=0或4x+y-25=0
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點O為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程為
x=1+
3
2
t
y=
1
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=
4cosθ
sin2θ

(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以原點為極點,x軸為極軸建立極坐標(biāo)系,曲線C1的方程為
x=
2
cosθ
y=sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點.
(1)求|AB|的值;
(2)求點M(-1,2)到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+2的斜率為2,則k=( 。
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案