【題目】對于數(shù)列,稱(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.

1)若數(shù)列1,2為“趨穩(wěn)數(shù)列”,求的取值范圍;

2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;

3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對任意,都有, 試計(jì)算:).

【答案】12)證明見解析,(3)

【解析】

1)由新定義可得,解不等式可得的范圍;(2)運(yùn)用等比數(shù)列的通項(xiàng)公式和求和公式,結(jié)合新定義,運(yùn)用不等式的性質(zhì)即可得證;(3)由任意,,都有,可得,由等比數(shù)列的通項(xiàng)公式,可得,結(jié)合新定義和二項(xiàng)式定理,化簡整理即可得到所求值.

1)由題意,即,

解得 ,

2)由已知,設(shè),因,故對任意的,都有,

,

,,,,,

即對任意的,都有,故是“趨穩(wěn)數(shù)列”,

(3) 當(dāng)時(shí),

當(dāng)時(shí),

同理,,

,

所以

所以

因?yàn)?/span>,且,所以, 從而,

所以

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面為正方形,PAD為等邊三角形,平面PAD丄平面PCD.

(1)證明:平面PAD丄平面ABCD:

(2)AB=2,Q為線段的中點(diǎn),求三棱錐Q-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新中國昂首闊步地走進(jìn)2019年,迎來了她70歲華誕.某平臺組織了偉大的復(fù)興之路一新中國70周年知識問答活動(dòng),規(guī)則如下:共有30道單選題,每題4個(gè)選項(xiàng)中只有一個(gè)正確,每答對一題獲得5顆紅星,每答錯(cuò)一題反扣2顆紅星;若放棄此題,則紅星數(shù)無變化.答題所獲得的紅星可用來兌換神秘禮品,紅星數(shù)越多獎(jiǎng)品等級越高.小強(qiáng)參加該活動(dòng),其中有些題目會(huì)做,有些題目可以排除若干錯(cuò)誤選項(xiàng),其余的題目則完全不會(huì).

1)請問:對于完全不會(huì)的題目,小強(qiáng)應(yīng)該隨機(jī)從4個(gè)選項(xiàng)中選一個(gè)作答,還是選擇放棄?(利用統(tǒng)計(jì)知識說明理由)

2)若小強(qiáng)有12道題目會(huì)做,剩下的題目中,可以排除一個(gè)錯(cuò)誤選項(xiàng)、可以排除兩個(gè)錯(cuò)誤選項(xiàng)和完全不會(huì)的題目的數(shù)量比是.請問:小強(qiáng)在本次活動(dòng)中可以獲得最多紅星數(shù)的期望是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD-A1B1C1D1的底面為菱形,AA1⊥底面ABCD,∠BAD=120°AB=2,E,F分別為CD,AA1的中點(diǎn).

(Ⅰ)求證:DF∥平面B1AE

(Ⅱ)若直線AD1與平面B1AE所成角的正弦值為,求AA1的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角B1-AE-D1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段上的點(diǎn),則與平面平行的直線有(

A.0B.1C.2D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了學(xué)生的健康,對課間操活動(dòng)做了如下規(guī)定:課間操時(shí)間若有霧霾則停止課間操,若無霧霾則組織課間操.預(yù)報(bào)得知,在未來一周從周一到周五的課間操時(shí)間出現(xiàn)霧霾的概率是:前3天均為,后2天均為,且每一天出現(xiàn)霧霾與否是相互獨(dú)立的.

(1)求未來5天至少一天停止課間操的概率;

(2)求未來5天組織課間操的天數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn).

)求a的取值范圍;

)設(shè)x1,x2的兩個(gè)零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有5個(gè)命題:

①函數(shù)的最小正周期是;

②終邊在軸上的角的集合是;

③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有3個(gè)公共點(diǎn);

④把函數(shù)的圖象向右平移得到的圖象;

⑤角為第一象限角的充要條件是

其中,真命題的編號是______(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是(  )

A.a,b,cR,且ac,則ab2cb2

B.命題對任意xR,有x2≥0”的否定是存在xR,有x2≤0”

C.ysin(2xφ)為偶函數(shù)的充要條件

D.是一條直線,α,β是兩個(gè)不同的平面,若lα,lβ,則αβ

查看答案和解析>>

同步練習(xí)冊答案