【題目】已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)當時,若曲線在直線的上方,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)題意,求出函數(shù)的導數(shù),由導數(shù)的幾何意義可得切線的斜率,求出切點的坐標,由直線的點斜式方程分析可得答案;(2)根據(jù)題意,原問題可以轉(zhuǎn)化為恒成立,設,求出的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系分析可得其最大值,分析可得答案.
(1)當時,,其導數(shù),.
又因為,
所以曲線y=f(x)在點(0,f(0))處的切線方程為;
(2)根據(jù)題意,當時,
“曲線y=f(x)在直線的上方”等價于“恒成立”,
又由x>0,則 ,
則原問題等價于恒成立;
設,則,
又由,則,則函數(shù)在區(qū)間上遞減,
又由,則有,
若恒成立,必有,
即的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:對任意都有,且當x>0時,.
(1)求的值,并證明為奇函數(shù);
(2)判斷函數(shù)的單調(diào)性,并證明;
(3)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;
(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線: (為參數(shù), ),在以坐標原點為極點, 軸的非負半軸為極軸的極坐標系中,曲線: .
(1)試將曲線與化為直角坐標系中的普通方程,并指出兩曲線有公共點時的取值范圍;
(2)當時,兩曲線相交于, 兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com