【題目】已知函數(shù)

(1)當時,求曲線在點處的切線方程;

(2)當時,若曲線在直線的上方,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)根據(jù)題意,求出函數(shù)的導數(shù),由導數(shù)的幾何意義可得切線的斜率,求出切點的坐標,由直線的點斜式方程分析可得答案;(2)根據(jù)題意,原問題可以轉(zhuǎn)化為恒成立,設,求出的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系分析可得其最大值,分析可得答案.

(1)當時,,其導數(shù)

又因為,

所以曲線y=fx)在點(0,f0))處的切線方程為;

2)根據(jù)題意,當時,

“曲線y=fx)在直線的上方”等價于“恒成立”,

又由x0,則 ,

則原問題等價于恒成立;

,則,

又由,則,則函數(shù)在區(qū)間上遞減,

又由,則有

恒成立,必有,

的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)上的單調(diào)性;

2)若,當時,,且有唯一零點,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷”.

(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認為體育迷與性別有關?

非體育迷

體育迷

合計

10

55

合計

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,平面,中點.

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的單調(diào)區(qū)間;

2)當,討論的零點個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)滿足:對任意都有,且當x>0時,

1)求的值,并證明為奇函數(shù);

2)判斷函數(shù)的單調(diào)性,并證明;

3)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足 ,其中.

(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;

(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線 為參數(shù), ),在以坐標原點為極點, 軸的非負半軸為極軸的極坐標系中,曲線 .

(1)試將曲線化為直角坐標系中的普通方程,并指出兩曲線有公共點時的取值范圍;

(2)當時,兩曲線相交于 兩點,求.

查看答案和解析>>

同步練習冊答案