【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當時, ,當時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調(diào)遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≤0,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)同一周期中最高點的坐標為,最低點的坐標為.
(1)求、、、的值;
(2)利用五點法作出函數(shù)在一個周期上的簡圖.(利用鉛筆直尺作圖,橫縱坐標單位長度符合比例)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知橢圓.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(I)求橢圓G的焦點坐標和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
與的情況如上:
所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(Ⅱ)當,即時,函數(shù)在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當,即時,
由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當,即時,函數(shù)在上單調(diào)遞減,
所以在區(qū)間上的最小值為.
綜上,當時,的最小值為;
當時,的最小值為;
當時,的最小值為.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.
(1)求的方程;
(2)若點在上,過作的兩弦與,若,求證: 直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com