【題目】已知函數(shù)的部分圖象如圖所示,若將函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的,再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則下列命題正確的是( ).

A.函數(shù)的解析式為

B.函數(shù)的解析式為

C.函數(shù)圖象的一條對(duì)稱軸是直線

D.函數(shù)在區(qū)間上單調(diào)遞增

【答案】ABD

【解析】

根據(jù)最高點(diǎn)坐標(biāo)求出,根據(jù)最高點(diǎn)坐標(biāo)與相鄰的軸交點(diǎn)坐標(biāo),求出周期,進(jìn)而求出,再由點(diǎn)坐標(biāo)求出,求出的解析式,可判斷選項(xiàng)A;根據(jù)坐標(biāo)變換關(guān)系,求出的解析式,可判斷選項(xiàng)B;將代入,即可判斷C選項(xiàng);求出的單調(diào)遞增區(qū)間,即可判斷選項(xiàng)D.

由圖可知,,,所以,

解得,故

因?yàn)閳D象過(guò)點(diǎn),所以,即

因?yàn)?/span>,所以,所以,

.故A項(xiàng)正確;

若其縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的,

所得到的函數(shù)解析式為,

再向右平移個(gè)單位長(zhǎng)度,所得到的函數(shù)解析式

.故B項(xiàng)正確;

當(dāng)時(shí),,即時(shí),

不取最值,故不是函數(shù)的一條對(duì)稱軸,

C項(xiàng)錯(cuò)誤;

,

故函數(shù)的單調(diào)增區(qū)間是,

當(dāng)時(shí),在區(qū)間上單調(diào)遞增.

所以D項(xiàng)正確.

故選:ABD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)M,N分別是橢圓C)的左頂點(diǎn)和上頂點(diǎn),F為其右焦點(diǎn),,橢圓的離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線與橢圓C相交于A,B兩點(diǎn),若直線OAAB,OB的斜率成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,M上的一點(diǎn),以為折痕把折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且平面平面.連接,點(diǎn)N的中點(diǎn),且平面.

1)求線段的長(zhǎng);

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)證明:當(dāng)時(shí),函數(shù)有唯一的極值點(diǎn);

2)設(shè)為正整數(shù),若不等式內(nèi)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線,點(diǎn)上一動(dòng)點(diǎn),過(guò)作直線,的中垂線,交于點(diǎn),設(shè)點(diǎn)的軌跡為曲線Γ.

1)求曲線Γ的方程;

2)若過(guò)的直線與Γ交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),求的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店每年春季以每件15元的價(jià)格購(gòu)入型號(hào)童褲若干,并開(kāi)始以每件30元的價(jià)格出售,若前2個(gè)月內(nèi)所購(gòu)進(jìn)的型號(hào)童褲沒(méi)有售完,則服裝店對(duì)沒(méi)賣(mài)出的型號(hào)童褲將以每件10元的價(jià)格低價(jià)處理(根據(jù)經(jīng)驗(yàn),1個(gè)月內(nèi)完全能夠把型號(hào)童褲低價(jià)處理完畢,且處理完畢后,該季度不再購(gòu)進(jìn)型號(hào)童褲).該服裝店統(tǒng)計(jì)了過(guò)去18年中每年該季度型號(hào)童褲在前2個(gè)月內(nèi)的銷售量,制成如下表格(注:視頻率為概率).

2月內(nèi)的銷售量(單位:件)

30

40

50

頻數(shù)(單位:年)

6

8

4

1)若今年該季度服裝店購(gòu)進(jìn)型號(hào)童褲40件,依據(jù)統(tǒng)計(jì)的需求量試求服裝店該季度銷售型號(hào)童褲獲取利潤(rùn)的分布列和期望;(結(jié)果保留一位小數(shù))

2)依據(jù)統(tǒng)計(jì)的需求量求服裝店每年該季度在購(gòu)進(jìn)多少件型號(hào)童褲時(shí)所獲得的平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列的前項(xiàng)中的最大項(xiàng)為,最小項(xiàng)為,設(shè).

1)若,求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期.一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)100名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

85

205

310

250

130

15

5

1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計(jì)

50歲以上(含50歲)

100

50歲以下

55

總計(jì)

200

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過(guò)點(diǎn),證明:;

2)若,點(diǎn)在曲線上,的中點(diǎn)均在拋物線上,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案